The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Mar 2007
Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats.
Thiazolidinediones (TZDs) are potent synthetic agonists of the ligand-activated transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma). TZDs were shown to induce neuroprotection after cerebral ischemia by blocking inflammation. As spinal cord injury (SCI) induces massive inflammation that precipitates secondary neuronal death, we currently analyzed the therapeutic efficacy of TZDs pioglitazone and rosiglitazone after SCI in adult rats. ⋯ At 6 h after SCI, the pioglitazone group showed significantly less induction of inflammatory genes [interleukin (IL)-6 by 83%, IL-1beta by 87%, monocyte chemoattractant protein-1 by 75%, intracellular adhesion molecule-1 by 84%, and early growth response-1 by 67%] compared with the vehicle group (p < 0.05 in all cases). Pioglitazone also significantly enhanced the post-SCI induction of neuroprotective heat shock proteins and antioxidant enzymes. Pretreatment with a PPARgamma antagonist, 2-chloro-5-nitro-N-phenyl-benzamide (GW9662), prevented the neuroprotection induced by pioglitazone.
-
J. Pharmacol. Exp. Ther. · Mar 2007
Effects of the inducible nitric-oxide synthase inhibitor L-N(6)-(1-iminoethyl)-lysine on microcirculation and reactive nitrogen species generation in the kidney following lipopolysaccharide administration in mice.
The mortality rate for septic patients with acute renal failure is approximately doubled compared with patients with sepsis alone. Unfortunately, the treatment for sepsis-induced renal failure has advanced little during the last several decades. Because sepsis is often caused by lipopolysaccharide (LPS), a mouse model of LPS challenge was used to study the development of kidney injury. ⋯ The generation of RNS was supported by the detection of nitrotyrosine-protein adducts in the kidney using immunohistochemistry. The iNOS inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL; 3 mg/kg i.p.) completely blocked the increase in rhodamine fluorescence and NAD(P)H autofluorescence and prevented the capillary defects at 6 h after LPS administration. These results suggest that iNOS-derived RNS is an important contributor to the peritubular capillary perfusion defects and RNS generation that occur during sepsis and emphasize that pharmacological inhibition of iNOS may provide beneficial effects during sepsis by improving renal capillary perfusion and reducing RNS generation in the kidney.
-
J. Pharmacol. Exp. Ther. · Mar 2007
Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and function as ligand-modulated transcription factors that regulate gene expression in many important biological processes. The PPARdelta subtype has the highest expression in the brain and is postulated to play a major role in neuronal cell function; however, the precise physiological roles of this receptor remain to be elucidated. Herein, we show that the high-affinity PPARdelta agonists L-165041 [4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)-propoxyl]phenoxy]-acetic acid] and GW501516 [2-methyl4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-triazol-5-yl)-methylsulfanyl)phenoxy acetic acid] protect against cytotoxin-induced SH-SY5Y cell injury in vitro and both ischemic brain injury and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in vivo. ⋯ Moreover, the PPARdelta agonists also significantly attenuated MPTP-induced depletion of striatal dopamine and related metabolite contents in mouse brain. These results demonstrate that subtype-selective PPARdelta agonists possess antiapoptotic properties in vitro, which may underlie their potential neuroprotective potential in in vivo experimental models of cerebral ischemia and Parkinson's disease (PD). These findings suggest that PPARdelta agonists could be useful tools for understanding the role of PPARdelta in other neurodegenerative disorders, as well as attractive therapeutic candidates for stroke and neurodegenerative diseases such as PD.
-
J. Pharmacol. Exp. Ther. · Feb 2007
Role of gamma-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension.
The paraventricular nucleus (PVN) of the hypothalamus is involved in tonic regulation of sympathetic outflow. Impaired GABAergic control of PVN neurons may contribute to the elevated sympathetic drive in hypertension. In this study, we examined the function of GABA(A) and GABA(B) receptors in the PVN in control of sympathetic nerve activity and arterial blood pressure (ABP) in normotensive and hypertensive rats. ⋯ However, in WKY and SD rats, baclofen only decreased LSNA and ABP at the highest dose tested. In addition, blockade of GABA(B) receptors in the PVN with CGP52432 (3-[[(3,4-dichlorophenyl)methyl]amino]propyl]diethoxymethyl)phosphinic acid) (0.15-3.0 nmol) dose-dependently increased LSNA and ABP in SHRs but not in normotensive controls. Collectively, this study provides new evidence that GABA(A) receptor function is attenuated, whereas the function of GABA(B) receptors is enhanced, in the PVN of SHRs.
-
J. Pharmacol. Exp. Ther. · Feb 2007
SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice.
We identified a novel nociceptin/orphanin FQ (NOP)/mu-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. ⋯ NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/mu-opioid partial agonist SR 16435 exhibited both NOP and mu-opioid receptor-mediated behaviors.