Bmc Med Inform Decis
-
Bmc Med Inform Decis · Jan 2010
Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit--a before and after analysis.
Potassium disorders can cause major complications and must be avoided in critically ill patients. Regulation of potassium in the intensive care unit (ICU) requires potassium administration with frequent blood potassium measurements and subsequent adjustments of the amount of potassium administrated. The use of a potassium replacement protocol can improve potassium regulation. For safety and efficiency, computerized protocols appear to be superior over paper protocols. The aim of this study was to evaluate if a computerized potassium regulation protocol in the ICU improved potassium regulation. ⋯ Computerized potassium control, integrated with the nurse-centered GRIP program for glucose regulation, is effective and reduces the prevalence of hypo- and hyperkalemia in the ICU compared with physician-driven potassium regulation.
-
Bmc Med Inform Decis · Jan 2010
Comparative StudyA novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks.
Echo-state networks (ESN) are part of a group of reservoir computing methods and are basically a form of recurrent artificial neural networks (ANN). These methods can perform classification tasks on time series data. The recurrent ANN of an echo-state network has an 'echo-state' characteristic. This 'echo-state' functions as a fading memory: samples that have been introduced into the network in a further past, are faded away. The echo-state approach for the training of recurrent neural networks was first described by Jaeger H. et al. In clinical medicine, until this moment, no original research articles have been published to examine the use of echo-state networks. ⋯ This proof of concept study is the first to evaluate the performance of echo-state networks in an ICU environment. This echo-state network predicted the need for dialysis in ICU patients. The AUC's of the echo-state networks were good and comparable to the performance of other classification algorithms. Moreover, the echo-state network was more easily configured than other time series modeling technologies.
-
Bmc Med Inform Decis · Jan 2010
Has information technology finally been adopted in Flemish intensive care units?
Information technology (IT) may improve the quality, safety and efficiency of medicine, and is especially useful in intensive Care Units (ICUs) as these are extremely data-rich environments with round-the-clock changing parameters. However, data regarding the implementation rates of IT in ICUs are scarce, and restricted to non-European countries. The current paper aims to provide relevant information regarding implementation of IT in Flemish ICU's (Flanders, Belgium). ⋯ Most ICUs in Flanders use hospital IT systems such as computerized laboratory and radiology displays. The adoption rate of ICISs has doubled over the last 3 years but is still surprisingly low, especially in general hospitals. The major reason for not implementing an ICIS is the substantial financial cost, together with the lack of arguments to ensure the cost/benefit.
-
Bmc Med Inform Decis · Jan 2010
A regret theory approach to decision curve analysis: a novel method for eliciting decision makers' preferences and decision-making.
Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. ⋯ We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc).
-
Bmc Med Inform Decis · Jan 2010
A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay.
Patients with a prolonged intensive care unit (ICU) length of stay account for a disproportionate amount of resource use. Early identification of patients at risk for a prolonged length of stay can lead to quality enhancements that reduce ICU stay. This study developed and validated a model that identifies patients at risk for a prolonged ICU stay. ⋯ A model that uses patient data from ICU days 1 and 5 accurately predicts a prolonged ICU stay. These predictions are more accurate than those based on ICU day 1 data alone. The model can be used to benchmark ICU performance and to alert physicians to explore care alternatives aimed at reducing ICU stay.