Bmc Med Inform Decis
-
Bmc Med Inform Decis · Oct 2012
Comparative StudyNon-linear dynamical signal characterization for prediction of defibrillation success through machine learning.
Ventricular Fibrillation (VF) is a common presenting dysrhythmia in the setting of cardiac arrest whose main treatment is defibrillation through direct current countershock to achieve return of spontaneous circulation. However, often defibrillation is unsuccessful and may even lead to the transition of VF to more nefarious rhythms such as asystole or pulseless electrical activity. Multiple methods have been proposed for predicting defibrillation success based on examination of the VF waveform. To date, however, no analytical technique has been widely accepted. We developed a unique approach of computational VF waveform analysis, with and without addition of the signal of end-tidal carbon dioxide (PetCO2), using advanced machine learning algorithms. We compare these results with those obtained using the Amplitude Spectral Area (AMSA) technique. ⋯ We report the development and first-use of a nontraditional non-linear method of analyzing the VF ECG signal, yielding high predictive accuracies of defibrillation success. Furthermore, incorporation of features from the PetCO2 signal noticeably increased model robustness. These predictive capabilities should further improve with the availability of a larger database.