Bmc Med Inform Decis
-
Bmc Med Inform Decis · May 2017
Modeling long-term human activeness using recurrent neural networks for biometric data.
With the invention of fitness trackers, it has been possible to continuously monitor a user's biometric data such as heart rates, number of footsteps taken, and amount of calories burned. This paper names the time series of these three types of biometric data, the user's "activeness", and investigates the feasibility in modeling and predicting the long-term activeness of the user. ⋯ This paper defines and investigates the notion of a user's "activeness", and shows that forecasting the long-term activeness of the user is indeed possible. Such information can be utilized by a health-related application to proactively recommend suitable events or services to the user.