Plos One
-
Economists believe that barter is the ultimate cause of social wealth--and even much of our human culture--yet little is known about the evolution and development of such behavior. It is useful to examine the circumstances under which other species will or will not barter to more fully understand the phenomenon. Chimpanzees (Pan troglodytes) are an interesting test case as they are an intelligent species, closely related to humans, and known to participate in reciprocal interactions and token economies with humans, yet they have not spontaneously developed costly barter. ⋯ Two potential explanations for this puzzling behavior are that chimpanzees lack ownership norms, and thus have limited opportunity to benefit from the gains of trade, and that chimpanzees' risk of defection is sufficiently high that large gains must be imminent to justify the risk. Understanding the conditions that support barter in chimpanzees may increase understanding of situations in which humans, too, do not maximize their gains.
-
Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine. ⋯ This is the first report describing the use of an H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of H5N1 influenza.
-
Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce substantial intra-subtypic cross-protection in humans to warrant the option of use, either prior to or just after the start of a pandemic outbreak. In the present study, we evaluated a split H5N1 A/H5N1/Vietnam/1194/04, clade 1 candidate vaccine, adjuvanted with a proprietary oil-in- water emulsion based Adjuvant System proven to be well-tolerated and highly immunogenic in the human (Leroux-Roels et al. (2007) The Lancet 370:580-589), for its ability to induce intra-subtypic cross-protection against clade 2 H5N1/A/Indonesia/5/05 challenge in ferrets. ⋯ These protection data in a stringent challenge model in association with an excellent clinical profile highlight the potential of this adjuvanted H5N1 candidate vaccine as an effective tool in pandemic preparedness.
-
Network-driven spontaneous electrical activity in the chicken spinal cord regulates a variety of developmental processes including neuronal differentiation and formation of neuromuscular structures. In this study we have examined the effect of chronic inhibition of spinal cord activity on motoneuron survival and differentiation. Early spinal cord activity in chick embryos was blocked using an avian replication-competent retroviral vector RCASBP (B) carrying the inward rectifier potassium channel Kir2.1. ⋯ Reduction of spinal cord activity also generates a significant acceleration in the inactivation rate of A-type K(+) currents without any significant change in current density. Kir2.1 expression did not affect the expression of voltage-gated Na(+) channels or cell capacitance. These experiments demonstrate that chronic inhibition of chicken spinal cord activity causes a significant change in the electrical properties of developing motoneurons.
-
IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. ⋯ Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.