Plos One
-
CAPE is an active constituent of propolis which is widely used in traditional medicine. This hydroxycinnamic acid derivate is a known activator of the redox-active Nrf2 signalling pathway in mammalian cells. We used C. elegans to investigate the effects of this compound on accumulation of reactive oxygen species and the modulation of the pivotal redox-active pathways SKN-1 and DAF-16 (homologues of Nrf2 and FoxO, respectively) in this model organism; these results were compared to the effects in Hct116 human colon carcinoma cells. CAPE exerts a strong antioxidative effect in C. elegans: The increase of reactive oxygen species induced by thermal stress was diminished by about 50%. CAPE caused a nuclear translocation of DAF-16, but not SKN-1. CAPE increased stress resistance of the nematode against thermal stress and finally a prolongation of the median and maximum lifespan by 9 and 17%, respectively. This increase in stress resistance and lifespan was dependent on DAF-16 as shown in experiments using a DAF-16 loss of function mutant strain. Life prolongation was retained under SKN-1 RNAi conditions showing that the effect is SKN-1 independent. The results of CAPE obtained in C. elegans differed from the results obtained in Hct116 colon carcinoma cells: CAPE also caused strong antioxidative effects in the mammalian cells, but no activation of the FoxO4 signalling pathway was detectable. Instead, an activation of the Nrf2 signalling pathway was shown by luciferase assay and western blots. ⋯ CAPE activates the insulin-like DAF-16, but not the SKN-1 signalling pathway in C. elegans and therefore enhances the stress resistance and lifespan of this organism. Since modulation of the DAF-16 pathway was found to be a pivotal effect of CAPE in C. elegans, this has to be taken into account for the investigation of the molecular mechanisms of the traditional use of propolis.
-
The breast cancer stem cells (BCSC) play important roles in breast cancer occurrence, recurrence and metastasis. However, the role of estrogen signaling, a signaling pathway important in development and progression of breast cancer, in regulation of BCSC has not been well established. Previously, we identified and cloned a variant of estrogen receptor α, ER-α36, with a molecular weight of 36 kDa. ⋯ Cells with forced expression of recombinant ER-α36, however, responded strongly to E2β treatment by increasing growth in vitro and tumor-seeding efficiency in vivo. The rapid estrogen signaling via the AKT/GSK3β pathway is involved in estrogen-stimulated growth of ER-positive breast cancer stem/progenitor cells. We concluded that ER-α36-mediated rapid estrogen signaling plays an important role in regulation and maintenance of ER-positive breast cancer stem/progenitor cells.
-
Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. ⋯ Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.
-
Inflammation, proliferation, and tissue remodeling are essential steps for wound healing. The hypoxic wound microenvironment promotes cell migration through a hypoxia--heat shock protein 90 alpha (Hsp90α)--low density lipoprotein receptor-related protein-1 (LRP-1) autocrine loop. To elucidate the role of this autocrine loop on burn wound healing, we investigated the expression profile of Hsp90α at the edge of burn wounds and found a transient increase in both mRNA and protein levels. ⋯ Consistently, topical application of Hsp90α in the early stage of deep second-degree burn wounds led to reduced inflammation and increased tissue granulation, with a concomitant reduction in the size of the wound at each time point tested (p<0.05). Consequently, epidermal cells at the wound margin progressed more rapidly causing an expedited healing process. In conclusion, these results provided a rationale for the therapeutic effect of Hsp90α on the burn wound management.
-
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. ⋯ Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation.