Plos One
-
Neonatal death in full-term infants who suffer from perinatal asphyxia (PA) is a major subject of investigation, since few tools exist to predict patients at risk of ominous outcome. We studied the possibility that urine S100B measurement may identify which PA-affected infants are at risk of early postnatal death. ⋯ Increased S100B protein urine levels in term newborns suffering PA seem to suggest a higher risk of neonatal death for these infants.
-
Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. ⋯ These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences.
-
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic interstitial lung disease that is unresponsive to current therapy and often leads to death. However, the rate of disease progression differs among patients. We hypothesized that comparing the gene expression profiles between patients with stable disease and those in which the disease progressed rapidly will lead to biomarker discovery and contribute to the understanding of disease pathogenesis. ⋯ These findings indicate that molecular signatures from lung parenchyma at the time of diagnosis could prove helpful in predicting the likelihood of disease progression or possibly understanding the biological activity of IPF.
-
Integrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network. ⋯ In this work we present an approach that integrates high throughput metabolome data to define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to characterize and identify (dis)functional stages.
-
Although prior studies have demonstrated a smoking-induced field of molecular injury throughout the lung and airway, the impact of smoking on the airway epithelial proteome and its relationship to smoking-related changes in the airway transcriptome are unclear. ⋯ 1D-PAGE coupled with LC-MS/MS effectively profiled the airway epithelium proteome and identified proteins expressed at different levels as a result of cigarette smoke exposure. While there was a strong correlation between protein and transcript detection within the same sample, we also identified proteins whose corresponding transcripts were not detected by microarray. This noninvasive approach to proteomic profiling of airway epithelium may provide additional insights into the field of injury induced by tobacco exposure.