Reprod Biol Endocrin
-
Reprod Biol Endocrin · Feb 2019
Meta AnalysisLetrozole versus laparoscopic ovarian drilling in clomiphene citrate-resistant women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials.
The objective of this systematic review was to examine the literature and to compare the effectiveness of letrozole (LE) versus laparoscopic ovarian drilling (LOD) for the induction of ovulation in women with clomiphene citrate (CC)-resistant polycystic ovary syndrome (PCOS). The PUBMED, Web of Science, and EMBASE databases were searched systematically for eligible randomized controlled trials (RCTs) from English language articles published from database inception to September 2018. ⋯ There were no differences with regard to ovulation rate (relative risk [RR] 1.12; 95% confidence interval [CI] 0.93 to 1.34; P = 0.12, I2 = 90%, 541 patients, three studies), pregnancy rate (RR 1.21; 95% CI 0.95 to 1.53; P = 0.12, I2 = 0%, 621 patients, four studies), live birth rate (RR 1.27; 95% CI 0.96 to 1.68; P = 0.09, I2 = 19%, 541 patients, three studies), and abortion rate (RR 0.7; 95% CI 0.3 to 1.61; P = 0.40, I2 = 0%, 621 patients, four studies) between the two groups. These results indicated that LE and LOD appear to be equally effective in achieving live birth rate in patients with CC-resistant PCOS.
-
Reprod Biol Endocrin · Oct 2017
ReviewOoplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction.
Ooplasmic transfer (OT) technique or cytoplasmic transfer is an emerging technique with relative success, having a significant status in assisted reproduction. This technique had effectively paved the way to about 30 healthy births worldwide. Though OT has long been invented, proper evaluation of the efficacy and risks associated with this critical technique has not been explored properly until today. This review thereby put emphasis upon the applications, efficacy and adverse effects of OT techniques in human. ⋯ The application of OT technique in humans demands more clarity and further development of this technique may successfully prove its utility as an effective treatment for oocyte incompetence.
-
Reprod Biol Endocrin · Aug 2016
Review Meta AnalysisWhich one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis.
The present study aims to compare which one has a better obstetric and perinatal outcome in singleton pregnancy, frozen embryo transfer (FET) or. in vitro fertilization treatment/intracytoplasmic sperm injection (IVF/ICSI)? ⋯ Singleton pregnancy after FET seems to have a better perinatal outcome compared with that after IVF/ICSI. Further randomized controlled trials which adjust for a variety of meaningful confounders are needed in order to draw sound conclusions.
-
Reprod Biol Endocrin · Aug 2016
Review Meta AnalysisWhich one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis.
The present study aims to compare which one has a better obstetric and perinatal outcome in singleton pregnancy, frozen embryo transfer (FET) or. in vitro fertilization treatment/intracytoplasmic sperm injection (IVF/ICSI)? ⋯ Singleton pregnancy after FET seems to have a better perinatal outcome compared with that after IVF/ICSI. Further randomized controlled trials which adjust for a variety of meaningful confounders are needed in order to draw sound conclusions.
-
Reprod Biol Endocrin · Nov 2014
ReviewInternational regulatory landscape and integration of corrective genome editing into in vitro fertilization.
Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. ⋯ We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.