Progress in brain research
-
Earlier studies suggested that while after spinal cord lesions and transplants at birth, the transplants serve both as a bridge and as a relay to restore supraspinal input caudal to the injury (Bregman, 1994), after injury in the adult the spinal cord transplants serve as a relay, but not as a bridge. We show here, that after complete spinal cord transection in adult rats, delayed spinal cord transplants and exogenous neurotrophic factors, the transplants can also serve as a bridge to restore supraspinal input (Fig. 9). We demonstrate here that when the delivery of transplants and neurotrophins are delayed until 2 weeks after spinal cord transection, the amount of axonal growth and the amount of recovery of function are dramatically increased. ⋯ In summary, the therapeutic intervention of tissue transplantation and exogenous neurotrophin support leads to improvements in supraspinal and propriospinal input across the transplant into the host caudal cord and a concomitant improvement in locomotor function. Paradoxically, delaying these interventions for several weeks after a spinal cord transection leads to dramatic improvements in recovery of function and a concomitant restoration of supraspinal input into the host caudal spinal cord. These findings suggest that opportunity for intervention after spinal cord injury may be far greater than originally envisioned, and that CNS neurons with long-standing injuries may be able to re-initiate growth leading to improvement in motor function.
-
The results from the language studies taken as a whole point to different developmental time courses and developmental vulnerabilities of aspects of grammatical and semantic/lexical processing. They thus provide support for conceptions of language that distinguish these subprocesses within language. Similarly, following auditory deprivation, processes associated with the dorsal visual pathway were more altered than were functions associated with the ventral pathway, providing support for conceptions of visual system organization that distinguish functions along these lines. ⋯ Further research is necessary to characterize systems that become constrained in this way and those that can be modified throughout life. This type of developmental evidence can contribute to fundamental descriptions of the architecture of different cognitive systems and can guide future studies of the cellular and molecular mechanisms important in neuroplasticity. Additionally, in the long run, they may contribute to the design of educational and habilitative programs for both normally and abnormally developing children.
-
Traumatic spinal cord injury is a consequence of a primary mechanical insult and a sequence of progressive secondary pathophysiological events that confound efforts to mitigate neurological deficits. Pharmacotherapy aimed at reducing the secondary injury is limited by a narrow therapeutic window. ⋯ As such, voltage-sensitive sodium channels are an important therapeutic target for the treatment of spinal cord trauma. This review describes the evolution of acute spinal cord injury and provides a rationale for the clinical utility of sodium channel blockers, particularly riluzole, in the management of spinal cord trauma.
-
Historical Article
Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal.
About 100 years ago, Santiago Ramón y Cajal reported that sensory fibers entering the spinal cord have ascending and descending branches, and that each of them sends collaterals to the gray matter where they have profuse ramifications. To him this was a fundamental discovery and proposed that the intraspinal branches of the sensory fibers were "centripetal conductors by which sensory excitation is propagated to the various neurons in the gray matter". In addition, he assumed that "conduction of excitation within the intraspinal arborizations of the afferent fibers would be proportional to the diameters of the conductors", and that excitation would preferentially flow through the coarsest branches. ⋯ The PAD produced by single, or by small groups of GABAergic interneurons in group I muscle afferents, can remain confined to some sets of intraspinal arborizations of the afferent fibers and not spread to nearby collaterals. In muscle spindle afferents this local character of PAD allows cutaneous and descending inputs to differentially inhibit the PAD in segmental and ascending collaterals of individual fibers, which may be an effective way to decouple the information flow arising from common sensory inputs. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.