Progress in brain research
-
Spinal cord injury is a devastating neurological trauma, often resulting in the impairment of bladder, bowel, and sexual function as well as the loss of voluntary control of muscles innervated by spinal cord segments below the lesion site. Research is ongoing into several classes of therapies to restore lost function. These include the encouragement of neural sparing and regeneration of the affected tissue, and the intervention with pharmacological and rehabilitative means to improve function. ⋯ These include the activation of fibers-in-passage which lead to the transsynaptic spread of activation through the spinal cord and the ability of ISMS to produce fatigue-resistant, weight-bearing movements. We present our thoughts on the clinical potential for ISMS with regard to implantation techniques, stability, and damage induced by mechanical and electrical factors. We conclude by suggesting improvements in materials and techniques that are needed in preparation for a clinical proof-of-principle and review our current attempts to achieve these.
-
Locomotion is a very robust motor pattern which can be optimized after different types of lesions to the central and/or peripheral nervous system. This implies that several plastic mechanisms are at play to re-express locomotion after such lesions. Here, we review some of the key observations that helped identify some of these plastic mechanisms. ⋯ We therefore also review some of the sensory and supraspinal mechanisms involved in the recovery of locomotion after partial spinal injury. We particularly stress a recent development using a dual spinal lesion paradigm in which a first partial spinal lesion is made which is then followed, some weeks later, by a complete spinalization. The results show that the spinal cord below the spinalization has been changed by the initial partial lesion suggesting that, in the recovery of locomotion after partial spinal lesion, plastic mechanisms within the spinal cord itself are very important.
-
Brain-computer interfaces (BCIs) include stimulators, infusion devices, and neuroprostheses. They all belong to functional neurosurgery. Deep brain stimulators (DBS) are widely used for therapy and are in need of innovative evolutions. Robotized exoskeletons require BCIs able to drive up to 26 degrees of freedom (DoF). We report the nanomicrotechnology development of prototypes for new 3D DBS and for motor neuroprostheses. For this complex project, all compounds have been designed and are being tested. Experiments were performed in rats and primates for proof of concepts and development of the electroencephalogram (EEG) recognition algorithm. ⋯ We have designed multielectrodes wireless implants to open the way for BCI ECoG-driven effectors. These technologies are also used to develop new generations of brain stimulators, either cortical or for deep targets. This chapter is aimed at illustrating that BCIs are actually the daily background of DBS, that the evolution of the method involves a growing multiplicity of targets and indications, that new technologies make possible and simpler than before to design innovative solutions to improve DBS methodology, and that the coming out of BCI-driven neuroprostheses for compensation of motor and sensory deficits is a natural evolution of functional neurosurgery.
-
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder that is characterized by repeated episodes of complete or partial cessation of breathing while sleeping. These recurrent breathing events result in fragmented sleep and recurrent hypoxemia. Distressing daytime sequelae reported by OSAHS patients include excessive daytime sleepiness, self-reported changes in mood, and cognitive problems. ⋯ Current studies examining cognitive recovery with positive airway pressure treatment are presented. It appears that the cognitive dysfunction of OSAHS is not likely to be due to a single mediating mechanism, nor is it pervasive across all patients. Future research should attempt to identify these moderators for cognitive dysfunction in OSAHS and to highlight the mechanisms of dysfunction by cognitive domain.
-
The past decade of neuroscience research has provided considerable evidence that the adult brain can undergo substantial reorganization following injury. For example, following an ischemic lesion, such as occurs following a stroke, there is a cascade of molecular, genetic, physiological and anatomical events that allows the remaining structures in the brain to reorganize. Often, these events are associated with recovery, suggesting that they contribute to it. ⋯ But more recently, efforts have been made to differentiate beneficial from detrimental changes. These notions are timely now that neurorehabilitative research is developing novel treatments to modulate, increase, or inhibit plasticity in targeted brain regions. We will review basic principles of plasticity and some of the new and exciting approaches that are currently being investigated to shape plasticity following injury in the central nervous system.