Progress in brain research
-
Review Historical Article
Medical physics--particle accelerators--the beginning.
This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.
-
We investigated in three groups of awake and sleeping goats whether there are differences in ventilatory responses after injections of Ibotenic acid (IA, glutamate receptor agonist and neurotoxin) into the pre-Bötzinger complex (preBötC), lateral parabrachial (LPBN), medial (MPBN) parabrachial, or Kölliker-Fuse nuclei (KFN). In one group, within minutes after bilateral injection of 10μl IA (50mM) into the preBötC, there was a 10-fold increase in breathing frequency, but 1.5h later, the goats succumbed to terminal apnea. These data are consistent with findings in reduced preparations that the preBötC is critical to sustaining normal breathing. ⋯ However, 3-5h after the injections into the KFN, breathing frequency was decreased and the three-phase eupneic breathing pattern was eliminated. Between 10 and 15h after the injections, the eupneic breathing pattern was not consistently restored to normal, breathing frequency remained attenuated, and there were apneas during wakefulness. Our findings during wakefulness and NREM sleep warrant concluding that (a) the preBötC is a primary site of respiratory rhythm generation; (b) the preBötC and the KFN are determinants of respiratory pattern generation; (c) after IA-induced lesions, there is time-dependent plasticity within the respiratory control network; and (d) ventilatory control mechanisms are state dependent.
-
Acute intermittent hypoxia (AIH) triggers a form of respiratory plasticity known as long-term facilitation (LTF), which is manifested as a progressive increase in respiratory motor activity that lasts for minutes to hours after the hypoxic stimulus is removed. Respiratory LTF has been reported in numerous animal models, but it appears to be influenced by a variety of factors (e.g., species, age, and gender). While most studies focusing on respiratory LTF have been conducted in adult (including young adult) rat preparations, little is known about the influence of postnatal maturation on AIH-induced respiratory LTF. ⋯ Following the AIH episodes, respiratory LTF was characterized by predominantly an increase in burst frequency (fLTF) ranging from ~10% to 55%, with most rats exhibiting a 20-40% increase. In seven rats, however, an increase in amplitude (ampLTF) (~10%, n=3; ~20%, n=3; ~30%, n=1) was also noted. These data suggest that in contrast to observations in anesthetized ventilated adult rats, in anesthetized spontaneously breathing P14-P15 neonatal rats, respiratory LTF is dominated by fLTF, not ampLTF.