Progress in brain research
-
Alzheimer's disease (AD) is the most prevalent form of neurodegeneration; however, therapies to prevent or treat AD are inadequate. Amyloid-beta (Abeta) protein accrues in cortical senile plaques, one of the key neuropathological hallmarks of AD, and is elevated in brains of early onset AD patients in a small number of families that bear certain genetic mutations, further implicating its role in this devastating neurological disease. In addition, soluble Abeta oligomers have been shown to be detrimental to neuronal function. ⋯ Preclinical trials in nonhuman primates, and human clinical trials using similar Abeta immunogens, are now underway. Abeta immunotherapy looks promising but must be made safer and more effective at generating antibody titers in the elderly. It is hoped that these novel immunogens will enhance Abeta antibody generation across a broad population and avoid the adverse events seen in the earlier clinical trial.
-
Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. ⋯ Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients' quality of life.
-
The recent upsurge in placebo research has demonstrated the sound neurobiological substrate of a phenomenon once believed to be only patient mystification, or at best a variable to control in clinical trials, bringing about a new awareness of its potential exploitation to the patient's benefit and framing it as a positive context effect, with the power to influence the therapy outcome. Placebo effects have been described both in the experimental setting and in different clinical conditions, many of which are of neurological interest. ⋯ A body of evidence from neurochemical, pharmacological, and neuroimaging studies points to the involvement of neural pathways specific to single conditions, such as the activation of the endogenous antinociceptive system during placebo analgesia or the release of dopamine in the striatum of parkinsonian patients experiencing placebo reduction of motor impairment. The possible clinical applications of placebo studies range from the design of clinical trials incorporating specific recommendations and minimizing the use of placebo arms to the optimization of the context surrounding the patient, in order to maximize the placebo component present in any treatment.
-
Disorders of consciousness (DOC) raise profound scientific, clinical, ethical, and philosophical issues. Growing knowledge on fundamental principles of brain organization in healthy individuals offers new opportunities for a better understanding of residual brain function in DOCs. We here discuss new perspectives derived from a recently proposed scheme of brain organization underlying consciousness in healthy individuals. ⋯ A state where both extrinsic and intrinsic systems are hypofunctional is predicted to lead to markedly impaired consciousness as seen in DOCs. Finally, we review the potential use of ultra-slow fluctuations in BOLD signal as a tool for assessing the functional integrity of extrinsic and intrinsic systems during "resting state" fMRI acquisitions. In particular, we discuss the potential provided by assessment of these slow spontaneous BOLD fluctuations as a novel tool in assessing the cognitive state and chances of recovery from brain pathologies underlying DOCs.
-
The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. ⋯ As our procedure can be easily transferred to MRI-equipped clinical sites, it may constitute a simple and effective possibility for online detection of residual consciousness and for LIS patients to communicate basic thoughts and needs in case no other alternative communication means are available (yet)--especially in the acute phase of the LIS. Future research may focus on further increasing the efficiency and accuracy of fMRI-based BCIs by implementing sophisticated data analysis methods (e.g., multivariate and independent component analysis) and neurofeedback training techniques. Finally, the presented BCI approach could be transferred to portable fNIRS systems as only this would enable hemodynamically based communication in daily life situations.