Progress in brain research
-
The locked-in syndrome (LIS) describes patients who are awake and conscious but severely deefferented leaving the patient in a state of almost complete immobility and loss of verbal communication. The etiology ranges from acute (e.g., brainstem stroke, which is the most frequent cause of LIS) to chronic causes (e.g., amyotrophic lateral sclerosis; ALS). In this article we review and present new data on the psychosocial adjustment to LIS. ⋯ Existing evidence supports that biased clinicians provide less-aggressive medical treatment in LIS patients. Thus, psychological treatment for depression, effective strategies for coping with the disease, and support concerning the maintenance of the social network are needed to cope with the disease. Novel communication devices and assistive technology now offers an increasing number of LIS patients to resume a meaningful life and an active role in society.
-
A dramatic paradigm shift is taking place in our understanding of the pathophysiology of multiple sclerosis (MS). An important contribution to such a shift has been made possible by the advances in magnetic resonance imaging (MRI) technology, which allows structural damage to be quantified in the brains of patients with MS and to be followed over the course of the disease. Modern quantitative MR techniques have reshaped the picture of MS, leading to the definition of the so- called "axonal hypothesis" (i.e., changes in axonal metabolism, morphology, or density are important determinants of functional impairment in MS). ⋯ The inflammatory and neurodegenerative components of the disease process are present from the earliest observable phases of the disease, but appear to be, at least partially, dissociated. In addition, recovery and repair play an important role in the genesis of the clinical manifestations of the disease, involving both structural changes and plastic reorganization of the cortex. This new picture of MS has important implications in the context of treatment options, since it suggests that agents that protect against neurodegeneration or promote tissue repair may have an important role to play alongside agents acting on the inflammatory component of the disease.
-
Hundreds of thousands around the world have poor vision or no vision at all due to inherited retinal degenerations (RDs) like retinitis pigmentosa (RP). Similarly, millions suffer from vision loss due to age-related macular degeneration (AMD). In both of these allied diseases, the primary target for pathology is the retinal photoreceptor cells that dysfunction and die. ⋯ In summary, no treatments are currently available for severely affected patients with RP and dry AMD. An electrical prosthetic device appears to offer hope in replacing the function of degenerating or dead photoreceptor neurons. Devices with new, sophisticated designs and increasing numbers of electrodes could allow for long-term restoration of functional sight in patients with improvement in object recognition, mobility, independent living, and general QOL.
-
Spinal cord injury (SCI) is a serious clinical problem for which no suitable therapeutic strategies have been worked out so far. Recent studies suggest that the SCI and its pathophysiological responses could be altered by systemic exposure to nanoparticles. Thus, SCI when made in animals intoxicated with engineered nanoparticles from metals or silica dust worsened the outcome. ⋯ This indicates that nanoparticles depending on the exposure and its usage could induce both neurotoxicity and neuroprotection. This review discusses the potential adverse or therapeutic utilities of nanoparticles in SCI largely based on our own investigations. In addition, possible mechanisms of nanoparticle-induced exacerbation of cord pathology or enhanced neuroprotection following nanodrug delivery is described in light of recently available data in this rapidly emerging field of nanoneurosciences.
-
The recent upsurge in placebo research has demonstrated the sound neurobiological substrate of a phenomenon once believed to be only patient mystification, or at best a variable to control in clinical trials, bringing about a new awareness of its potential exploitation to the patient's benefit and framing it as a positive context effect, with the power to influence the therapy outcome. Placebo effects have been described both in the experimental setting and in different clinical conditions, many of which are of neurological interest. ⋯ A body of evidence from neurochemical, pharmacological, and neuroimaging studies points to the involvement of neural pathways specific to single conditions, such as the activation of the endogenous antinociceptive system during placebo analgesia or the release of dopamine in the striatum of parkinsonian patients experiencing placebo reduction of motor impairment. The possible clinical applications of placebo studies range from the design of clinical trials incorporating specific recommendations and minimizing the use of placebo arms to the optimization of the context surrounding the patient, in order to maximize the placebo component present in any treatment.