Progress in brain research
-
Noninvasive neurostimulation methods are particularly suited for migraine treatment thanks to their most favorable adverse event profile. Among them, noninvasive vagus nerve stimulation (nVNS) has raised great hope because of the role the vagus nerve is known to play in pain modulation, inflammation and brain excitability. ⋯ Both in acute and preventive trials, nVNS was characterized by an outstanding tolerance and safety profile, like the other noninvasive neurostimulation techniques. In physiological animal and human studies, cervical nVNS was shown to generate somatosensory evoked responses, to modulate pain perception and several areas of the cerebral pain network, and to inhibit experimental cortical spreading depression, which are relevant effects for migraine therapy.
-
Migraine is a highly heritable complex brain disorder, imposing a huge burden of disability on sufferers. The genetic architecture of migraine ranges from the rare Mendelian forms whereby a single gene mutation is sufficient to cause disease to gene variants that individually impart only a small increase in migraine risk. Despite the considerable advances in the last decade, there are significant challenges to translate genetic findings into drug targets and eventually successful treatments. ⋯ This will require integration of genetic data with new technologies such as human stem cell models of migraine that allow the interpretation of genetic risk into disease relevant cellular phenotypes. This was recently undertaken for the first time in migraine, whereby stem cells from patients with the rare TRESK frameshift mutation converted into pain sensory neurons demonstrated hyper-excitability. The continued study of the molecular basis of migraine thus offers new paths to drug targets and precision medicine approaches.
-
Review
A new era for migraine: The role of calcitonin gene-related peptide in the trigeminovascular system.
There is a huge improvement in our understanding of migraine pathophysiology in the past decades. The activation of the trigeminovascular system has been proved to play a key role in migraine. Calcitonin gene-related peptide (CGRP) and CGRP receptors are widely distributed in the trigeminovascular system. ⋯ Based on these findings, several treatment options have been designed for migraine treatment, including CGRP receptor antagonists (gepants) and monoclonal antibodies targeting CGRP or CGRP receptors. The clinical trials show both gepants and monoclonal antibodies are effective for migraine treatment. In this section, we describe the roles of the trigeminovascular system in migraine, the discovery of CGRP, and the CGRP signaling pathway.
-
Calcitonin Gene-Related Peptide (CGRP) plays a pivotal role in migraine pathophysiology. Two types of CGRP function-blocking modalities, monoclonal antibodies, and small molecules (gepants), have been developed to target the CGRP ligands and CGRP receptors. ⋯ Multiple clinical trials of the CGRP monoclonal antibodies and gepants, and now some open-label long-term extension data, established their efficacy, safety, and tolerability. In this chapter, we summarize the major clinical trials, pharmacokinetic insights, safety and tolerability profiles, and real-world data (if available) of the CGRP monoclonal antibodies and gepants.
-
Review
Therapeutic role of melatonin in migraine prophylaxis: Is there a link between sleep and migraine?
Melatonin is a ubiquitously distributed molecule that possesses diverse functions. Melatonin plays a key role in the endogenous circadian rhythms of humans via light stimulation in the hypothalamus. In addition, melatonin has roles in the opioid system, the nitric oxide pathway, free radical scavenging, inflammation, and antinociception. ⋯ Longitudinal studies have shown that some sleep disorders and migraine show bidirectional comorbidities. Therefore, the identification and treatment of sleep disorders is important when treating migraine. Melatonin represents a promising treatment strategy for both disorders, especially when these conditions are combined.