Progress in brain research
-
Minor traumatic brain injury (mTBI) is caused by inertial effects, which induce sudden rotation and acceleration forces to and within the brain. At less severe levels of injury, for example in mTBI, there is probably only transient disturbance of ionic homeostasis with short-term, temporary disturbance of brain function. With increased levels of severity, however, studies in animal models of TBI and in humans have demonstrated focal intra-axonal alterations within the subaxolemmal, neurofilament and microtubular cytoskeletal network together with impairment of axoplasmic transport. ⋯ In ice hockey, current return-to-play guidelines do not take into account these new findings appropriately, for example allow returning to play in the same game. It has recently been hypothesized that the processes summarized above may predispose brain cells to assume a vulnerable state for an unknown period after mild injury (mTBI). Therefore, we recommend that any confused player with or without amnesia should be taken off the ice and not be permitted to play again for at least 72h.
-
Before energy metabolism can take place, brain cells must be supplied with oxygen and glucose. Only then, in combination with normal mitochondrial function, sufficient energy (adenosine tri-phosphate (ATP)) can be produced. Glucose is virtually the sole fuel for the human brain. ⋯ This review focuses on three main issues: (1) Cerebral oxygen transport (CBF, and oxygen partial pressure (PO2) and delivery to the brain); (2) Energy metabolism (glycolysis, mitochondrial function: citric acid cycle and oxidative phosphorylation); and (3) The role of the above in the pathophysiology of severe head injury. Basic understanding of these issues in the normal as well as in the traumatized brain is essential in developing new treatment strategies. These issues also play a key role in interpreting data collected from monitoring techniques such as cerebral tissue PO2, jugular bulb oxygen saturation (SjvO2), near infra red spectroscopy (NIRS), microdialysis, intracranial pressure monitoring (ICP), laser Doppler flowmetry, and transcranial Doppler flowmetry--both in the experimental and in the clinical setting.
-
Repetitive traumatic brain injury (TBI) occurs in a significant portion of trauma patients, especially in specific populations, such as child abuse victims or athletes involved in contact sports (e.g. boxing, football, hockey, and soccer). A continually emerging hypothesis is that repeated mild injuries may cause cumulative damage to the brain, resulting in long-term cognitive dysfunction. The growing attention to this hypothesis is reflected in several recent experimental studies of repeated mild TBI in vivo. ⋯ Additionally, it will be crucial to design and utilize proper controls, which can be more challenging than experimental approaches to single mild TBI. It will also be essential to combine, and compare, data derived from in vitro experiments with those conducted with animals in vivo. These issues, as well as a summary of findings from repeated TBI research, are discussed in this review.
-
Tinnitus has many similarities with the symptoms of neurological disorders such as paresthesia and central neuropathic pain. There is considerable evidence that the symptoms and signs of some forms of tinnitus and central neuropathic pain are caused by functional changes in specific parts of the central nervous system and that these changes are caused by expression of neural plasticity. ⋯ In this chapter we will discuss specific similarities between tinnitus and pain, and compare tinnitus with other phantom disorders. Since much more is known about pain than about tinnitus, it is valuable to take advantage of the knowledge about pain in efforts to understand the pathophysiology of tinnitus and find treatments for tinnitus.
-
Acute spinal cord injury (SCI) is a devastating neurological disorder that can affect any individual at a given instance. Current treatment options for SCI include the use of high dose methylprednisolone sodium succinate, a corticosteroid, surgical interventions to stabilize and decompress the spinal cord, intensive multisystem medical management, and rehabilitative care. ⋯ These include the Surgical Treatment for Acute Spinal Cord Injury Study (STASCIS) Trial to evaluate the role and timing of surgical decompression for acute SCI, neuroprotection with the semisynthetic second generation tetracycline derivative, minocycline; aiding axonal conduction with the potassium channel blockers, neuroregenerative/neuroprotective approaches with the Rho antagonist, Cethrin; the use of anti-NOGO monoclonal antibodies to augment plasticity and regeneration; as well as cell-mediated repair with stem cells, bone marrow stromal cells, and olfactory ensheathing cells. This review overviews the pathobiology of SCI and current treatment choices before focusing the rest of the discussion on the variety of promising neuroprotective and cell-based approaches that have recently moved, or are very close, to clinical testing.