Progress in brain research
-
The recognition that sleep is one of the foundations of athlete performance is increasing both in the elite athlete arena as well as applied performance research. Sleep, as identified through sleep deprivation and sleep extension investigations, has a role in performance, illness, injury, metabolism, cognition, memory, learning, and mood. Elite athletes have been identified as having poorer quality and quantity of sleep in comparison to the general population. ⋯ Sleep, in particular slow wave sleep, provides a restorative function to the body to recover from prior wakefulness and fatigue by repairing processes and restoring energy. In addition, research in the general population is highlighting the importance of sleep on neurophysiology, cognitive function, and mood which may have implications for elite athlete performance. It is thus increased understanding of both the effects of sleep deprivation and potential mechanisms of influence on performance that may allow scientists and practitioners to positively influence sleep in athletes and ultimately maximize performances.
-
Having investigated the decision making of world class elite and subelite athletes (see Parkin and Walsh, 2017; Parkin et al., 2017), here the abilities of those at the earliest stage of entry to elite sport are examined. Junior elite athletes have undergone initial national selection and are younger than athletes examined previously (mean age 13 years). Decision making under mental pressure is explored in this sample. During performance an athlete encounters a wide array of mental pressures; these include the psychological impact of errors, negative feedback, and requirements for sustained attention in a dynamic environment (Anshel and Wells, 2000; Mellalieu et al., 2009). Such factors increase the cognitive demands of the athletes, inducing distracting anxiety-related thoughts known as rumination (Beilock and Gray, 2007). Mental pressure has been shown to reduce performance of decision-making tasks where reward and loss contingencies are explicit, with a shift toward increased risk taking (Pabst et al., 2013; Starcke et al., 2011). Mental pressure has been shown to be detrimental to decision-making speed in comparison to physical stress, highlighting the importance of considering a range of different pressures encountered by athletes (Hepler, 2015). ⋯ Mental pressure affects decision making in a sample of junior elite athletes, with a slowing of response times, and modulations to performance of decision making under risk that have a high requirement for working memory. In relation to sport, these findings suggest that novel situations that place high cognitive demands on the athlete may be particularly influenced by mental pressure. The application of this work in junior elite athletes included the feedback of individual results and the implementation of a decision-making taxonomy.
-
Brain-computer interfaces are systems that use signals recorded from the brain to enable communication and control applications for individuals who have impaired function. This technology has developed to the point that it is now being used by individuals who can actually benefit from it. ⋯ These include the ease of obtaining high-quality recordings by home users, the speed, and accuracy of current devices and adapting applications to the needs of the user. In this chapter, we discuss some of these unsolved issues.
-
Brain-computer interfaces (BCIs) use brain activity to control external devices, facilitating paralyzed patients to interact with the environment. In this chapter, we discuss the historical perspective of development of BCIs and the current advances of noninvasive BCIs for communication in patients with amyotrophic lateral sclerosis and for restoration of motor impairment after severe stroke. Distinct techniques have been explored to control a BCI in patient population especially electroencephalography (EEG) and more recently near-infrared spectroscopy (NIRS) because of their noninvasive nature and low cost. ⋯ In severe chronic stroke without residual hand function first results indicate a possible superior motor rehabilitation to available treatment using BCI training. Here we present an overview of the available studies and recent results, which open new doors for communication, in the completely paralyzed and rehabilitation in severely affected stroke patients. We also reflect on and describe possible neuronal and learning mechanisms responsible for BCI control and perspective for future BMI research for communication in CLIS and stroke motor recovery.
-
The optic nerve head forms the interface between the intraocular compartment and the retrobulbar compartment. The former is characterized by what we term intraocular pressure (IOP) and the latter by orbital cerebrospinal fluid pressure (CSFP). The trans-lamina cribrosa pressure difference (TLCPD) is defined as the difference between the pressures in the two compartments. ⋯ In particular, glaucomatous optic neuropathy may be due to either an elevated IOP and/or an abnormally low orbital CSFP, or due to a change in the time-dependent relationship between the pulse-synchronous changes in IOP and orbital CSFP. Based on the triangular relationships between IOP, CSFP, and blood pressure, glaucoma may be described as an imbalance between these three pressure parameters, eventually leading to an increased TLCPD. Because the retinal and choroidal venous blood drains through the CSFP space, elevated CSFP may be associated with dilated retinal veins, increased incidence of retinal vein occlusions, higher prevalence and severity of diabetic retinopathy, and thicker choroid.