Progress in brain research
-
The developing normal brain shows a remarkable capacity for plastic change in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, parent-child relationships, peer relationships, stress, gonadal hormones, intestinal flora, diet, and injury. The effects of injury vary with the precise age-at-injury, with the general result being that injury during cell migration and neuronal maturation has a poor functional outcome, whereas similar injury during synaptogenesis has a far better outcome. A variety of factors influence functional outcome including the nature of the behavior in question and the age at behavioral assessment as well as pre- and postinjury experiences. Here, we review the phases of brain development, how factors influence brain, and behavioral development in both the normal and perturbed brain, and propose mechanisms that may underlie these effects.
-
The purpose of this review is to summarize how our perspective about the neuroscience of brain plasticity, informed by perceptual, experimental, and cognitive psychology, has led to the designs of a new class of therapeutic tools developed to drive functionally distorted and damaged brains in corrective directions. How does neuroplasticity science inform us about optimal therapeutic program designs? How do we apply that science, using modern technology, to drive neurological changes that address both the neurobehavioral distortions and the resulting behavioral deficits that are expressed in specific neurological and psychiatric disorders? By what strategies can we achieve the strongest and most complete rehabilitative corrections? These are questions that we have extensively explored in our efforts to establish new medical applications of neuroplasticity-based therapeutics. Here, we summarize the state of this rapidly emerging area of translational neuroscience, beginning with an explanation of the scientific premises and strategies, then describing their implementation in therapeutic software to address two human illnesses: the treatment of social cognition deficits in chronic schizophrenia and in autism; and the amelioration of age-related functional decline using strategies designed to delay the onset of--and potentially prevent--Alzheimer's Disease and related causes of dementia in aging.
-
We constantly need to make decisions that can result in rewards of different amounts with different probabilities and at different timing. To characterize the neural coding of such computational factors affecting value-based decision making, we have investigated how reward information processing is influenced by parameters such as reward magnitude, probability, delay, effort, and uncertainty using either fMRI in healthy humans or intracranial recordings in patients with epilepsy. ⋯ Moreover, separate valuation systems were engaged for delay and effort costs when deciding between options. Finally, genetic variations in dopamine-related genes influenced the response of the reward system and may contribute to individual differences in reward-seeking behavior and in predisposition to neuropsychiatric disorders.
-
Emotion plays a major role in influencing our everyday cognitive and behavioral functions, including decision making. We introduce different ways in which emotions are characterized in terms of the way they influence or elicited by decision making. ⋯ We present and discuss results from a study with emotional pictures presented prior to decision making and how that influences both decision processes and postdecision experience as a function of uncertainty. We conclude with a summary of the work on emotions and decision making in the context of decision-making theories and our work on incidental emotions.
-
The Alice in Wonderland syndrome is a term applied to altered bizarre perceptions of size and shapes of a patient's body and illusions of changes in the forms, dimensions, and motions of objects that a patient with this syndrome encounters. These metamorphopsias arise during complex partial seizures, migraine headaches, infections, and intoxications. The illusions and hallucinations resemble the strange phenomena that Alice experienced in Lewis Carroll's Alice's Adventures in Wonderland. ⋯ The author of this chapter suggests that Dodgson suffered from migraine headaches and used these experiences to weave an amusing tale for Alice Liddell. The chapter also discusses the neurology of mercury poisoning affecting the behavior of Mad Hatter character. The author suggests that the ever-somnolent Dormouse suffered from excessive daytime sleepiness due to obstructive sleep apnea.