P Nutr Soc
-
Impairments of sensory perception that occur during a period of critical care can seriously impact on health and nutritional status, activities of daily living, independence, quality of life and the possibility of recovery. It is emphasized from the outset that sensory losses in critically-ill patients may or may not be related to their current medical condition. The present paper provides an overview of all five senses (vision, hearing, taste, smell and touch) and describes the factors that contribute to sensory losses in critically-ill patients, including medications, medical conditions and treatments and the process of aging itself. ⋯ The paper also reviews a study in which the sensory performance (of all five senses) was compared in three groups of elderly subjects: (1) patients who had undergone coronary artery bypass surgery; (2) patients with cardiovascular conditions but with no history of surgery; (3) healthy non-medicated age-matched controls. Performance of patients who had undergone coronary artery bypass surgery was worse than that for the other two groups, with taste and smell losses greater than for the other senses. The study demonstrates that critical illness (e.g. coronary artery bypass surgery) can exacerbate sensory losses in an older cohort.
-
The metabolism of critical illness is characterised by a combination of starvation and stress. There is increased production of cortisol, catecholamines, glucagon and growth hormone and increased insulin-like growth factor-binding protein-1. Phagocytic, epithelial and endothelial cells elaborate reactive oxygen and nitrogen species, chemokines, pro-inflammatory cytokines and lipid mediators, and antioxidant depletion ensues. ⋯ Supplementation of particular amino acids able to support or regulate the immune response, such as glutamine, may have a role not only for their potential metabolic effect but also for their potential antioxidant role. Doubt remains in relation to arginine supplementation. High-dose mineral and vitamin antioxidant therapy may have a place.
-
Review Meta Analysis
Glutamine in critical care: current evidence from systematic reviews.
Glutamine, the most abundant amino acid in the body, is thought to become conditionally essential in critical illness. Some of the important roles for glutamine are as a carrier for inter-organ N, a preferred fuel for enterocytes and cells of the immune system, a substrate for renal NH3 formation and a precursor for glutathione. ⋯ Trials of parenteral nutrition containing glutamine with patients after elective surgery also suggest reduction of infection, but it is unlikely that glutamine-containing parenteral nutrition would be used for such patients. The evidence base is limited by the quality of the reported trials and the suggestion that there is publication bias, with trials suggesting reduced infection being more likely to be published.
-
Critically-ill patients experience an extent of hyperinflammation, cellular immune dysfunction, oxidative stress and mitochondrial dysfunction. Supplementation with key nutrients, such as glutamine and antioxidants, is most likely to have a favourable effect on these physiological derangements, leading to an improvement in clinical outcomes. The results of two meta-analyses suggest that glutamine and antioxidants may be associated with improved survival. ⋯ A novel design feature is the combined use of parenteral and enteral study nutrients dissociated from the nutrition support. The therapeutic strategies tested in the randomized trial may lead to less morbidity and improved survival in critically-ill patients. The trial will be conducted in approximately twenty tertiary-care ICU in Canada and the first results are expected in 2009.
-
During critical illness free radical production may increase as a result of, for example, sepsis or tissue trauma. In addition, because of a potential for increased losses, and the possibility of inadequate nutrition, the antioxidant defences of the body may become compromised. ⋯ Various nutritional and pharmacological strategies to enhance antioxidant defences have been proposed, which aim either to maintain or enhance endogenous antioxidant stores or to provide alternative antioxidant agents. Trace elements and amino acids are particularly important, and their synergistic role in the maintenance of the body's antioxidant defence network will be discussed.