Epidemiol Prev
-
Meta Analysis Comparative Study
[Meta-analysis of the Italian studies on short-term effects of air pollution].
In recent years, much attention has been given to review reports on the early effects of air pollution on health, measured through daily series of deaths and/or hospital admissions. A number of large planned meta-analyses (in which methods for data retrieval and processing are commonly planned a priori for all participating centers) are on going both in the US and in Europe. The National Mortality, Morbidity and Air Pollution Study included data from 90 US cities, whereas APHEA (Air Pollution and Health, a European Approach) considers data from about 30 european cities. The present paper summarizes methods and findings of MISA, a meta-analysis of data from 8 Italian cities. It belongs to an ad hoc supplement of Epidemiologia & Prevenzione (Epidemiol Prev 2001; 25 (2) Suppl: 1-72), the official Journal of the Italian Association of Epidemiology, which contains a full description of the study. MISA was launched on March 2000, within the project "Statistics, Environment and Health" (GRASPA), funded by the Italian Ministry of Education. Additional support was given by the Authorities of the 8 participating cities (from North to South: Turin, Milan, Verona, Ravenna, Bologna, Florence, Rome and Palermo). DAILY HEALTH DATA: Deaths certificate and hospital admission data have been collected respectively from the Local Health Authority and regional files. The same programme for retrieval of data on selected hospital admissions for acute conditions was used in the 8 cities. Main data are summarized in Table 1. DAILY CONCENTRATION OF POLLUTANTS: Most data were obtained from Regional Environmental Protection Agencies, which are responsible for environmental monitoring since 1993. Verona, Palermo and Milan (1990-94) data were obtained from local sources. Monitors with more than 25% of missing data were excluded. Meteorological data were collected by the same monitors and completed with data from monitors situated in the suburbs or (in Milan and Bologna) in the airport. The monitors were selected by a group of experts to ensure comparability. For SO2 and NO2 daily averages of hourly measurements were used, whereas concentrations of ozone and CO were estimated as the maximum 8 hours moving average. Total suspended particulate or PM10 were measured as 24 hours deposition. All analyses used the whole range of observed values (Table 2). Daily data were considered as missing when more than 25% of hourly data were not available. Missing data in one monitor were imputed as average of data from the remaining monitors weighted by the ratio between the specific monitor's year average and the general year average of all the selected city monitors. Missing data in one day were imputed as average of four days (preceding and following day, the same day of the previous and following weeks). In the city of Florence and Palermo PM10 concentrations were available. For the other cities we applied a conversion factor from PTS to PM10 (0.6 for Turin and 0.8 for all the others) estimated through validation studies. Ozone concentrations were used only where background monitors were available (Turin, Verona, Bologna and Florence) and limited to the warm season (May through September). ⋯ The meta-analysis of the Italian studies on short-term effects of air pollution in 8 cities, MISA, exhibits the following features: With the exception of Naples, all greatest Italian cities were included; overall a population of 7 million was enrolled. The study protocol was accurate with regard to the selection of hospital admissions for acute conditions. Monitored data of concentration of pollutant were carefully evaluated before their inclusion in the meta-analysis. City specific analyses were carried out according to a common protocol controlling for seasonality, influenza epidemics, age and meterological variables; [table: see text] the protocol derived from a structured exploratory analysis. The meta-analysis was done using fixed and random effects models; a hierarchical bayesian model was fitted in a sensitivity analysis. The heterogeneity of effects across cities was investigated using a hierarchical bayesian model for meta-regression. While mortality data are of good quality, hospital admission data are more problematic. Since the filing criteria for the latter changed around 1995, comparability of results before and after such date is limited. Moreover, hospital admissions rely on availability of beds, the offer of which may be restricted during the warm season. Comparability of pollutant concentration estimates among cities may have been influenced by differences in monitor characteristics. (ABSTRACT TRUNCATED)