Molecules
-
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. ⋯ Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.
-
Breath analysis using eNose technology can be used to discriminate between asthma and COPD patients, but it remains unclear whether results are influenced by smoking status. We aim to study whether eNose can discriminate between ever- vs. never-smokers and smoking <24 vs. >24 h before the exhaled breath, and if smoking can be considered a confounder that influences eNose results. We performed a cross-sectional analysis in adults with asthma or chronic obstructive pulmonary disease (COPD), and healthy controls. ⋯ In healthy controls, the eNose did not discriminate between ever or never-smokers (AUC 0.54; 95% CI: 0.49-0.60) and recent cigarette consumption (AUC 0.60; 95% CI: 0.50-0.69). The eNose could distinguish between ever and never-smokers in asthma and COPD patients, but not recent smokers. Recent smoking is not a confounding factor of eNose breath profiles.