Australas Phys Eng S
-
Australas Phys Eng S · Mar 2012
A retrospective evaluation of radiation dose associated with low dose FDG protocols in whole-body PET/CT.
The objective of the study is to retrospectively measure patient radiation dose resulting from whole body X-ray CT and FDG PET studies using a low-dose protocol performed on the Siemens Biograph mCT scanner. A total of 483 patient studies were reviewed. For each, the CT dose-length product was used to estimate radiation dose to the patient as a result of the whole body X-ray CT component of the PET/CT study. ⋯ The average total effective dose across the entire patient cohort for a combined PET/CT study was found to be ~14.5 mSv (9.6-29.8 mSv). Low-dose protocols for whole-body PET/CT scanning result in an effective radiation dose to the patient of approximately 14.5 mSv. Additional reductions through the use of iterative CT reconstruction and optimized low-dose FDG protocols could see total effective doses for whole-body PET/CT fall to below 10 mSv.
-
Australas Phys Eng S · Mar 2012
Respiration-rate estimation of a moving target using impulse-based ultra wideband radars.
Recently, Ultra-wide band signals have become attractive for their particular advantage of having high spatial resolution and good penetration ability which makes them suitable in medical applications. One of these applications is wireless detection of heart rate and respiration rate. Two hypothesis of static environment and fixed patient are considered in the method presented in previous literatures which are not valid for long term monitoring of ambulant patients. ⋯ Then, the second algorithm is developed to detect respiration rate of a moving target. The proposed algorithm uses correlation for body movement cancellation, and then detects the respiration rate based on energy in frequency domain. The results of algorithm prove an accuracy of 98.4 and 97% in simulated and experimental data, respectively.