Crit Care Resusc
-
Background: With the adoption of multimodal neuromonitoring techniques, a large amount of high resolution neurophysiological data is generated during the treatment of patients with moderate to severe traumatic brain injury (m-sTBI) that is available for further analysis. The Monitoring with Advanced Sensors, Transmission and E-Resuscitation in Traumatic Brain Injury (MASTER-TBI) collaborative was formed in 2020 to facilitate analysis of these data. Objective: The MASTER-TBI collaborative curates m-sTBI patient data for the purposes of comparative effectiveness research, machine learning algorithm development, and neuropathophysiological phenomena analysis. ⋯ Results and conclusion: MASTER-TBI continues to develop data science-informed systems and techniques to maximise the use of captured high resolution m-sTBI patient neuromonitoring data. The highly innovative systems provide a world-class platform which aims to enhance the search for improved m-sTBI care and outcomes. This article provides an overview of the MASTER-TBI project's developed systems and techniques as well as a rationale for the approaches taken.
-
Objective: To compare the outcomes of patients with refractory out-of-hospital cardiac arrest (OHCA) transported to a hospital that provides extracorporeal membrane oxygenation (ECMO) during cardiopulmonary resuscitation (ECPR) with patients transported to hospitals without ECPR capability. Design, setting: Retrospective review of patient care records in a pre-hospital and hospital setting. Participants: Adult patients with OHCA who left the scene and arrived with cardiopulmonary resuscitation in progress at 16 hospitals in Melbourne, Australia, between January 2016 and December 2019. ⋯ After adjustment for baseline differences, the odds ratio for good neurological outcome after transport to an ECPR centre compared with a non-ECPR centre was 4.63 (95% CI, 0.97-22.11; P = 0.055). Conclusion: The survival rate of patients with refractory OHCA transported to an ECPR centre remains low. Outcomes in larger cities might be improved with shorter scene times and additional ECPR centres that would provide for earlier initiation of ECMO.
-
Objectives: Mechanically ventilated patients account for about one-third of all admissions to the intensive care unit (ICU). Ketamine has been conditionally recommended to aid with analgesia in such patients, with low quality of evidence available to support this recommendation. We aimed to perform a narrative scoping review of the current knowledge of the use of ketamine, with a specific focus on mechanically ventilated ICU patients. ⋯ Conclusions: Ketamine is used in mechanically ventilated ICU patients with several potentially positive clinical effects. However, it has a significant side effect profile, which may limit its use in these patients. The role of low dose ketamine infusion in mechanically ventilated ICU patients is not well studied and requires investigation in high quality, prospective randomised trials.
-
Objective: To compare the characteristics, treatments and 6-month functional outcomes of patients with coronavirus disease 2019 (COVID-19) versus non-COVID-19 viral pneumonitis supported by venovenous extracorporeal membrane oxygenation (VV-ECMO). Design: Prospective, observational cohort study in seven intensive care units (ICUs) across Australia. Participants: Patients admitted to participating ICUs with laboratory-confirmed COVID-19 or viral pneumonitis requiring VV-ECMO. ⋯ Overall disability, health-related quality of life, and mortality were similar, but ICU and hospital length of stay were significantly longer in patients with COVID-19. Conclusions: Six-month functional outcomes and mortality were similar between COVID-19 and viral pneumonitis patients treated with VV-ECMO. However, length of stay was longer in COVID-19 patients, which may have resource implications.
-
Objective: To assess the incidence and impact of metabolic acidosis in Indigenous and non-Indigenous patients Design: Retrospective study. Setting: Adult intensive care units (ICUs) from Australia and New Zealand. Participants: Patients aged 16 years or older admitted to an Australian or New Zealand ICU in one of 195 contributing ICUs between January 2019 and December 2020 who had metabolic acidosis, defined as pH < 7.30, base excess (BE) < -4 mEq/L and PaCO2 ≤ 45 mmHg. ⋯ Indigenous patients with metabolic acidosis received RRT more often (28.2% v 22.0%; P < 0.001), but hospital mortality was similar between the groups (25.8% in Indigenous v 25.8% in non-Indigenous; P = 0.971). Conclusions: Critically ill Indigenous ICU patients are more likely to have a metabolic acidosis in the first 24 hours of their ICU admission, and more often received RRT during their ICU admission compared with non-Indigenous patients. However, hospital mortality was similar between the groups.