Resp Care
-
Comparative Study
Multi-wavelength pulse oximeter is not suitable for adjusting D(LCO) measurements.
Diffusing capacity of the lung for carbon monoxide (D(LCO)) can be affected by abnormal hemoglobin (Hb) or carboxyhemoglobin (COHb) levels. Predicted D(LCO) can be adjusted to reflect abnormal Hb or COHb levels. Until recently, blood sampling was required to determine Hb and COHb levels, but a new pulse oximeter, the Masimo RAD-57, can measure Hb and COHb noninvasively. We hypothesized that there would be no significant difference between the invasive and noninvasive Hb and COHb measurements for adjusting D(LCO). ⋯ Pulse oximetry may be of limited usefulness for adjusting either predicted or measured D(LCO) values, but might be useful to screen patients for invasive testing, particularly if the D(LCO) is close to the lower limit of normal.
-
Comparative Study
Comparison of a novel lycra endotracheal tube cuff to standard polyvinyl chloride cuff and polyurethane cuff for fluid leak prevention.
A high-volume low-pressure endotracheal tube (ETT) cuff forms folds along its contact with the trachea, allowing mucus leakage into the lungs. We developed a thin-walled ETT cuff made of Lycra polyurethane. ⋯ Our Lycra cuff provided complete tracheal sealing in vitro.
-
The use of ventilatory assistance can be traced back to biblical times. However, mechanical ventilators, in the form of negative-pressure ventilation, first appeared in the early 1800s. Positive-pressure devices started to become available around 1900 and today's typical intensive care unit (ICU) ventilator did not begin to be developed until the 1940s. ⋯ All of the advancements in ICU ventilator design over these generations provide the basis for speculation on the future. ICU ventilators of the future will be able to integrate electronically with other bedside technology; they will be able to effectively ventilate all patients in all settings, invasively and noninvasively; ventilator management protocols will be incorporated into the basic operation of the ventilator; organized information will be presented instead of rows of unrelated data; alarm systems will be smart; closed-loop control will be present on most aspects of ventilatory support; and decision support will be available. The key term that will be used to identify these future ventilators will be smart!