Resp Care
-
The cardiopulmonary physiology of dinosaurs-and especially of the long-necked sauropods, which grew much larger than any land animals before or since-should be inherently fascinating to anyone involved in respiratory care. What would the blood pressure be in an animal 12 m (40 ft) tall? How could airway resistance and dead space be overcome while breathing through a trachea 9 m (30 ft) long? The last decade has seen a dramatic increase in evidence bearing on these questions. Insight has come not only from new fossil discoveries but also from comparative studies of living species, clarification of evolutionary relationships, new evaluation techniques, computer modeling, and discoveries about the earth's ancient atmosphere. ⋯ Circulatory considerations leave little doubt that the dinosaurs had 4-chambered hearts. Birds evolved from dinosaurs, and the avian-type air-sac respiratory system, which is more efficient than its mammalian counterpart, may hold the answer to the breathing problems posed by the sauropods' very long necks. Geochemical and other data indicate that, at the time the dinosaurs first appeared, the atmospheric oxygen concentration was only about half of what it is today, and development of the avian-type respiratory system may have been key in the dinosaurs' evolutionary success, enabling them to out-compete the mammals and dominate the land for 150 million years.
-
Cystic fibrosis (CF) patients use several therapies to treat chronic inflammation and infection in the lungs and to improve airway clearance. Inhaled therapies in CF typically include bronchodilators, airway wetting agents, mucus-active agents, and antibiotics, among others. ⋯ Fortunately, novel aerosol delivery systems and drug formulations are being developed to tackle the many challenges of aerosol delivery in CF. If successful, these systems will reduce the time burden and improve the clinical outcomes for the CF community.