Resp Care
-
Comparative Study Clinical Trial
Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method.
Volumetric capnography is an alternative method of measuring expired carbon dioxide partial pressure (P(eCO2)) and physiologic dead-space-to-tidal-volume ratio (V(D)/V(T)) during mechanical ventilation. In this method, P(eCO2) is measured at the Y-adapter of the ventilator circuit, thus eliminating the effects of compression volume contamination and the need to apply a correction factor. We investigated the accuracy of volumetric capnography in measuring V(D)/V(T), compared to both uncorrected and corrected measurements, using a metabolic monitor in patients with acute respiratory distress syndrome (ARDS). ⋯ Volumetric capnography measurements of V(D)/V(T) in mechanically-ventilated patients with ARDS are as accurate as those obtained by metabolic monitor technique. .
-
Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, to provide protection from aspiration, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles, from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. ⋯ Others are designed with a port above the cuff that allows for subglottic aspiration of secretions. The tracheostomy button is used for stoma maintenance. It is important for clinicians caring for patients with a tracheostomy tube to understand the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient.
-
Tracheostomy is one of the most common intensive care unit procedures performed. The advantages include patient comfort, safety, ability to communicate, and better oral and airway care. Patients may have shorter intensive care unit stays, days of mechanical ventilation, and hospital stays. ⋯ As soon as the need for prolonged airway access is identified, the tracheostomy should be considered. Generally, this decision can be made within 7-10 days. Bedside techniques allow rapid tracheostomy with low morbidity.
-
The respiratory therapist plays an integral role in tracheostomy tube decannulation. Removal of the tracheostomy tube should be considered only if the original upper-airway obstruction is resolved, if airway secretions are controlled, and if mechanical ventilation is no longer needed. ⋯ Tracheostomy decannulation requires caution, particularly following a prolonged period of tracheostomy use. The tracheostomy tube decannulation process is well suited for therapist-implemented protocols.