Brain Stimul
-
Randomized Controlled Trial
Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex.
Transcranial random noise stimulation (tRNS) is an innovative technique of non-invasive electrical stimulation. tRNS over the parietal cortex has improved cognitive function in healthy controls and, applied to the auditory cortex, tRNS has shown beneficial effects on tinnitus. ⋯ Our finding of tRNS induced increased excitability in the auditory cortex parallels previous findings of tRNS effects on motor cortex excitability and is in line with current concepts of tRNS mechanisms such as increase of stochastic resonance.
-
Controlled Clinical Trial
Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.
Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. ⋯ tVNS can increase HRV and reduce sympathetic nerve outflow, which is desirable in conditions characterized by enhanced sympathetic nerve activity, such as heart failure. tVNS can therefore influence human physiology and provide a simple and inexpensive alternative to invasive VNS.
-
Controlled Clinical Trial
Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls.
Slow oscillations (<1 Hz) during slow wave sleep (SWS) promote the consolidation of declarative memory. Children with attention-deficit/hyperactivity disorder (ADHD) have been shown to display deficits in sleep-dependent consolidation of declarative memory supposedly due to dysfunctional slow brain rhythms during SWS. ⋯ These data indicate that increasing slow oscillation power during sleep by toDCS can alleviate declarative memory deficits in children with ADHD.
-
Randomized Controlled Trial
Inter-subject variability of LTD-like plasticity in human motor cortex: a matter of preceding motor activation.
Continuous theta burst stimulation (cTBS) of the human primary motor cortex (M1) induces long-term depression (LTD)-like plastic changes in corticospinal excitability, but several studies have reported high inter-subject variability of this effect. Most studies use a tonic voluntary contraction of the target muscle before cTBS to set stimulation intensity; however, it is unclear how this might affect response variability. ⋯ cTBS induces consistent LTD-like plasticity with low inter-subject variability if pre-activation of the stimulated motor cortex is avoided. This affirms a translational potential of cTBS in clinical applications that aim at reducing cortical excitability.