Neurologist
-
By affecting young people during the most productive period of their lives, spinal cord injury is a devastating problem for modern society. A decade ago, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. ⋯ New surgical procedures, pharmacologic treatments, and functional neuromuscular stimulation methods have evolved over the last decades that can improve functional outcomes after spinal cord injury, but limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.