Laboratory investigation; a journal of technical methods and pathology
-
Hypercapnic acidosis may attenuate ventilator-induced lung oxidative stress injury and alveolar cell apoptosis, but the underlying mechanisms are poorly understood. We examined the effects of hypercapnic acidosis on the role of apoptosis signal-regulating kinase 1 (ASK1), which activates the c-Jun N-terminal kinase (JNK) and p38 cascade in both apoptosis and oxidative reactions, in high-pressure ventilation stimulated rat lungs. Rats were ventilated with a peak inspiratory pressure (PIP) of 30 cmH2O for 4 h and randomly given FiCO2 to achieve normocapnia (PaCO2 at 35-45 mm Hg) or hypercapnia (PaCO2 at 80-100 mm Hg); normally ventilated rats with PIP of 15 cmH2O were used as controls. ⋯ In addition, the high-pressure mechanical stretch also induced apoptosis and caspase-3 activation in the AECIIs. Hypercapnia attenuated these responses, suppressing the ASK1 signal pathways with its downstream kinase phosphorylation of p38 MAPK and JNK, and caspase-3 activation. Thus, hypercapnia can attenuate cell apoptosis and oxidative stress damage in rat lungs during injurious ventilation, at least in part, due to the suppression of the ASK1-JNK/p38 MAPK pathways.
-
Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). ⋯ As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions.
-
Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. ⋯ All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better understanding the linkage between angiogenesis and bone repair.
-
Tumor necrosis factor-α (TNF-α) acts as a key factor for the development of inflammatory bowel diseases (IBDs), whose function is known to be mediated by TNF receptor 1 (TNFR1) or TNFR2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, chronic colitis was established by oral administration of dextran sulfate sodium (DSS) in TNFR1 or TNFR2-/- mice. ⋯ Intriguingly, despite comparable intensity of intestinal inflammation in TNFR-deficient mice after DSS, systemic inflammatory response (including splenomegaly and myeloid expansion) was augmented dramatically in TNFR1-/- mice, instead of TNFR2-/- mice. Granulocyte-macrophage colony-stimulating factor (GMCSF) was identified as a key mediator in this process, as neutralization of GMCSF dampened peripheral inflammatory reaction and reduced mortality in TNFR1-/- mice. These data suggest that signaling via TNFR1 or TNFR2 has a protective role in chronic intestinal inflammation, and that lacking TNFR1 augments systemic inflammatory response in GMCSF-dependent manner.
-
Hypoxia-induced pulmonary hypertension (PH), which is characterized by vasoconstriction and subsequent structural remodeling of blood vessels, is an important event in chronic obstructive pulmonary disease patients and in people living at high altitudes. Hypoxia-inducible factor-1α (HIF-1α) and its regulator four-and-a-half LIM (Lin-11, Isl-1 and Mec-3) domain 1 (Fhl-1) have important roles in hypoxia-induced PH. MicroRNA-206 (miR-206) is critical for myogenesis and related diseases; however, the role of miR-206 in hypoxia-induced PH is unknown. miR-206 expression was evaluated in a hypoxic rat model and in cultured hypoxic pulmonary artery smooth muscle cells (PASMCs) using real-time quantitative PCR (RT-qPCR). ⋯ Fhl-1-targeted siRNA in PASMC prevented cell proliferation and led to an increased proportion of cells in the G1 phase without altering miR-206 expression. Bioinformatic analysis and dual-luciferase reporter gene assays revealed direct evidence for miR-206 targeting of HIF-1α. In conclusion, hypoxia-induced downregulation of miR-206 promotes PH by targeting the HIF-1α/Fhl-1 pathway in PASMCs. miR-206 could be a triggering factor of early stage of hypoxia-induced PH.