Future Virol
-
Zoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in poultry in numerous countries in Europe, Asia and Africa, and the recently emerged H7N9 viruses in China, due to their relatively high number of human fatalities and pandemic potential. To start a pandemic, zoonotic influenza A viruses should not only acquire the ability to attach to, enter and replicate in the critical target cells in the respiratory tract of the new host, but also efficiently spread between humans by aerosol or respiratory droplet transmission. Here, we discuss the latest advances on the genetic and phenotypic determinants required for avian influenza A viruses to adapt to and transmit between mammals.
-
Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic. ⋯ The best route to effective therapeutics and vaccines is through a detailed and global view of virus-host interactions that can be achieved using a systems biology approach. Here, we provide our perspective on the role of systems biology in deepening our understanding of virus-host interactions and in improving drug and vaccine development. We offer examples from influenza virus research, as well as from research on other pandemics of our time - HIV/AIDS and HCV - to demonstrate that systems biology offers one possible key to stopping the cycle of viral pandemics.