Viruses Basel
-
The beginning of 2020 has seen the emergence of COVID-19 outbreak caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). There is an imminent need to better understand this new virus and to develop ways to control its spread. In this study, we sought to gain insights for vaccine design against SARS-CoV-2 by considering the high genetic similarity between SARS-CoV-2 and SARS-CoV, which caused the outbreak in 2003, and leveraging existing immunological studies of SARS-CoV. ⋯ As no mutation has been observed in these identified epitopes among the 120 available SARS-CoV-2 sequences (as of 21 February 2020), immune targeting of these epitopes may potentially offer protection against this novel virus. For the T cell epitopes, we performed a population coverage analysis of the associated MHC alleles and proposed a set of epitopes that is estimated to provide broad coverage globally, as well as in China. Our findings provide a screened set of epitopes that can help guide experimental efforts towards the development of vaccines against SARS-CoV-2.
-
Comparative Study
Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV.
After the outbreak of the severe acute respiratory syndrome (SARS) in the world in 2003, human coronaviruses (HCoVs) have been reported as pathogens that cause severe symptoms in respiratory tract infections. Recently, a new emerged HCoV isolated from the respiratory epithelium of unexplained pneumonia patients in the Wuhan seafood market caused a major disease outbreak and has been named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ⋯ There are some similarities and differences in the epidemiology and clinical features between these two viruses and diseases that are caused by these viruses. The goal of this work is to systematically review and compare between SARS-CoV and SARS-CoV-2 in the context of their virus incubation, originations, diagnosis and treatment methods, genomic and proteomic sequences, and pathogenic mechanisms.
-
In early December 2019 a cluster of cases of pneumonia of unknown cause was identified in Wuhan, a city of 11 million persons in the People's Republic of China. Further investigation revealed these cases to result from infection with a newly identified coronavirus, termed the 2019-nCoV. The infection moved rapidly through China, spread to Thailand and Japan, extended into adjacent countries through infected persons travelling by air, eventually reaching multiple countries and continents. ⋯ Unfortunately, there is limited experience with coronavirus infections during pregnancy, and it now appears certain that pregnant women have become infected during the present 2019-nCoV epidemic. In order to assess the potential of the Wuhan 2019-nCoV to cause maternal, fetal and neonatal morbidity and other poor obstetrical outcomes, this communication reviews the published data addressing the epidemiological and clinical effects of SARS, MERS, and other coronavirus infections on pregnant women and their infants. Recommendations are also made for the consideration of pregnant women in the design, clinical trials, and implementation of future 2019-nCoV vaccines.