Viruses Basel
-
Novel SARS-CoV-2 variants with potential impacts on diagnostics, antivirals, and vaccines are spreading in Italy. In this editorial, we highlight the role that veterinary public health institutes may have in this global crisis, as their expertise in genomic/antigenic surveillance and animal studies are crucial to tackle SARS-CoV-2 pandemic.
-
SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) has accumulated multiple mutations during its global circulation. Recently, three SARS-CoV-2 lineages, B.1.1.7 (501Y. V1), B.1.351 (501Y. ⋯ Mutations may, however, result in diagnostic tests failures and possible interference with binding of newly identified anti-viral candidates against SARS-CoV-2, likely necessitating roll out of recurring "flu-like shots" annually for tackling COVID-19. The functional relevance of these mutations has been described in terms of modulation of host tropism, antibody resistance, diagnostic sensitivity and therapeutic candidates. Besides global economic losses, post-vaccine reinfections with emerging variants can have significant clinical, therapeutic and public health impacts.
-
The coronavirus SARS-CoV-2, which causes Coronavirus disease 2019 (COVID-19), has infected more than 100 million people globally and caused over 2.5 million deaths in just over one year since its discovery in Wuhan, China in December 2019. The pandemic has evoked widespread collateral damage to societies and economies, and has destabilized mental health and well-being. Early in 2020, unprecedented efforts went into the development of vaccines that generate effective antibodies to the SARS-CoV-2 virus. ⋯ Vaccine rollout has proceeded around the globe. Previously, we and others had proposed a target product profile (TPP) for ideal/optimal and acceptable/minimal COVID-19 vaccines. How well do these candidate vaccines stack up to a harmonized TPP? Here, we perform a comparative analysis in several categories of these candidate vaccines based on the latest available trial data and highlight the early successes as well as the hurdles and barriers yet to be overcome for ending the global COVID-19 pandemic.
-
Clinical Trial
Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine in Subjects with Prior SARS-CoV-2 Infection.
Although antibody levels progressively decrease following SARS-CoV-2 infection, the immune memory persists for months. Thus, individuals who naturally contracted SARS-CoV-2 are expected to develop a more rapid and sustained response to COVID-19 vaccines than naïve individuals. In this study, we analyzed the dynamics of the antibody response to the BNT162b2 mRNA COVID-19 vaccine in six healthcare workers who contracted SARS-CoV-2 in March 2020, in comparison to nine control subjects without a previous infection. ⋯ In all subjects with pre-existing immunity, a rapid increase in anti-spike receptor-binding domain (RBD) IgG antibodies and neutralizing antibody titers was observed one week after the first dose, which seemed to act as a booster. Notably, in previously infected individuals, neutralizing antibody titers 7 days after the first vaccine dose were not significantly different from those observed in naïve subjects 7 days after the second vaccine dose. These results suggest that, in previously infected people, a single dose of the vaccine might be sufficient to induce an effective response.
-
We evaluated a lyophilized CRISPR-Cas12 assay for SARS-CoV-2 detection (Lyo-CRISPR SARS-CoV-2 kit) based on reverse transcription, isothermal amplification, and CRISPR-Cas12 reaction. From a total of 210 RNA samples extracted from nasopharyngeal swabs using spin columns, the Lyo-CRISPR SARS-CoV-2 kit detected 105/105 (100%; 95% confidence interval (CI): 96.55-100) positive samples and 104/105 (99.05%; 95% CI: 94.81-99.97) negative samples that were previously tested using commercial RT-qPCR. The estimated overall Kappa index was 0.991, reflecting an almost perfect concordance level between the two diagnostic tests. ⋯ The Lyo-CRISPR SARS-CoV-2 kit was suitable for detecting a wide range of RT-qPCR-positive samples (cycle threshold range: 11.45-36.90) and dilutions of heat-inactivated virus (range: 2.5-100 copies/µL); no cross-reaction was observed with the other respiratory pathogens tested. We demonstrated that the performance of the Lyo-CRISPR SARS-CoV-2 kit was similar to that of commercial RT-qPCR, as the former was highly sensitive and specific, timesaving (1.5 h), inexpensive, and did not require sophisticated equipment. The use of this kit would reduce the time taken for diagnosis and facilitate molecular diagnosis in low-resource laboratories.