Acs Chem Neurosci
-
Synthetic cannabinoid (SC) designer drugs featuring bioisosteric fluorine substitution are identified by forensic chemists and toxicologists with increasing frequency. Although terminal fluorination of N-pentyl indole SCs is sometimes known to improve cannabinoid type 1 (CB1) receptor binding affinity, little is known of the effects of fluorination on functional activity of SCs. This study explores the in vitro functional activities of SC designer drugs JWH-018, UR-144, PB-22, and APICA, and their respective terminally fluorinated analogues AM-2201, XLR-11, 5F-PB-22, and STS-135 at human CB1 and CB2 receptors using a FLIPR membrane potential assay. ⋯ All SCs dose-dependently induced hypothermia and reduced heart rate at doses of 0.3-10 mg/kg. There was no consistent trend for increased potency of fluorinated SCs over the corresponding des-fluoro SCs in vivo. Based on magnitude and duration of hypothermia, the SCs were ranked for potency (PB-22 > 5F-PB-22 = JWH-018 > AM-2201 > APICA = STS-135 = XLR-11 > UR-144).
-
We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine.