Acs Chem Neurosci
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been established as a cause of severe alveolar damage and pneumonia in patients with advanced Coronavirus disease (COVID-19). The consolidation of lung parenchyma precipitates the alterations in blood gases in COVID-19 patients that are known to complicate and cause hypoxemic respiratory failure. With SARS-CoV-2 damaging multiple organs in COVID-19, including the central nervous system that regulates the breathing process, it is a daunting task to compute the extent to which the failure of the central regulation of the breathing process contributes to the mortality of COVID-19 affected patients. ⋯ Though a complex metabolic and respiratory dysregulation also occurs with infections caused by SARS-CoV-1 and MERS that are known to contribute toward deaths of the patients in the past, we highlight here the role of systemic dysregulation and the CNS respiratory regulation mechanisms in the causation of mortalities seen in COVID-19. The invasion of the CNS by SARS-CoV-2, as shown recently in areas like the brainstem that control the normal breathing process with nuclei like the pre-Bötzinger complex (pre-BÖTC), may explain why some of the patients with COVID-19, who have been reported to have recovered from pneumonia, could not be weaned from invasive mechanical ventilation and the occurrences of acute respiratory arrests seen in COVID-19. This debate is important for many reasons, one of which is the fact that permanent damage to the medullary respiratory centers by SARS-CoV-2 would not benefit from mechanical ventilators, as is possibly occurring during the management of COVID-19 patients.
-
Spike protein (S protein) is the virus "key" to infect cells and is able to strongly bind to the human angiotensin-converting enzyme2 (ACE2), as has been reported. In fact, Spike structure and function is known to be highly important for cell infection as well as for entering the brain. Growing evidence indicates that different types of coronaviruses not only affect the respiratory system, but they might also invade the central nervous system (CNS). ⋯ In addition, we found that the SARS-CoV-2 S protein is slightly more positively charged than that of SARS-CoV since it contains four more positively charged residues and five less negatively charged residues which may lead to an increased affinity to bind to negatively charged regions of other molecules through nonspecific and specific interactions. Analysis the S protein binding to the host ACE2 receptor showed a 30% higher binding energy for SARS-CoV-2 than for the SARS-CoV S protein. These results might be useful for understanding the mechanism of cell entry, blood-brain barrier crossing, and clinical features related to the CNS infection by SARS-CoV-2.