Resp Res
-
Comparative Study
A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury.
Biologically variable ventilation (return of physiological variability in rate and tidal volume using a computer-controller) was compared to control mode ventilation with and without a recruitment manoeuvre - 40 cm H2O for 40 sec performed hourly; in a porcine oleic acid acute lung injury model. ⋯ In this porcine model of acute lung injury, various indices to measure injury or inflammation did not differ between the 3 approaches to ventilation. However, when using a low tidal volume strategy with moderate levels of PEEP, sustained improvements in arterial oxygen tension and respiratory system compliance were only seen with BVV when compared to CMV or CMV with a recruitment manoeuvre.
-
The relative contributions of the cytotoxic phenotype of P. aeruginosa expressing type III secretory toxins and an immunocompromised condition lacking normal Toll-like receptor 4 (TLR4) signaling in the pathogenesis of acute lung injury and sepsis were evaluated in a mouse model for Pseudomonas aeruginosa pneumonia. By using lipopolysaccharide-resistant C3H/HeJ mice missing normal TLR4 signaling due to a mutation on the tlr4 gene, we evaluated how TLR4 signaling modulates the pneumonia caused by cytotoxic P. aeruginosa expressing type III secretory toxins. ⋯ The cytotoxic phenotype of P. aeruginosa is the critical factor causing acute lung injury and sepsis in infected hosts. When the P. aeruginosa is a cytotoxic strain, the TLR4 signaling system is essential to clear the bacteria to prevent lethal lung injury and bacteremia.