Resp Res
-
Letter Case Reports
The unsynchronized changes of CT image and nucleic acid detection in COVID-19: reports the two cases from Gansu, China.
The novel coronavirus disease (COVID-19) outbreak started in December 2019 in Wuhan, China, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The CT image is used to assess the disease progress, whereas the continued two times of negative results from SARS-CoV-2 nucleic acid detection had been considered as a criterion for ending antiviral treatment. ⋯ Our report highlighted the unsynchronized expression in the changes of CT image and nucleic acid detection in COVID-19, and lasting positive nucleic acid test result in patients recovered from pneumonia. It may be contributed to recognize the disease and improve prevention.
-
Multicenter Study Clinical Trial
Responsiveness and minimal clinically important difference of SGRQ-I and K-BILD in idiopathic pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) specific version of St. George's Respiratory Questionnaire (SGRQ-I) and King's Brief Interstitial Lung Disease questionnaire (K-BILD) are validated health-related quality of life (HRQL) instruments, but no or limited data exist on their responsiveness and minimal clinically important difference (MCID). The objectives of this study were to assess responsiveness of SGRQ-I and K-BILD and determine MCID separately for deterioration and improvement in a large, prospective cohort of patients with IPF in a real-world setting. ⋯ SGRQ-I and K-BILD were responsive to change concerning both HRQL and most physiological anchors. MCID was determined separately for improvement and deterioration, resulting in different estimates; especially a smaller estimate for deterioration compared to improvement in K-BILD.
-
Subphenotypes were recently reported within clinical acute respiratory distress syndrome (ARDS), with distinct outcomes and therapeutic responses. Experimental models have long been used to mimic features of ARDS pathophysiology, but the presence of distinct subphenotypes among preclinical ARDS remains unknown. This review will investigate whether: 1) subphenotypes can be identified among preclinical ARDS models; 2) such subphenotypes can identify some responsive traits. ⋯ PROSPERO (ID: CRD42019157236).