Bmc Neurosci
-
Low-intensity transcranial focused ultrasound (tFUS) has emerged as a new non-invasive modality of brain stimulation with the potential for high spatial selectivity and penetration depth. Anesthesia is typically applied in animal-based tFUS brain stimulation models; however, the type and depth of anesthesia are known to introduce variability in responsiveness to the stimulation. Therefore, the ability to conduct sonication experiments on awake small animals, such as rats, is warranted to avoid confounding effects of anesthesia. ⋯ The wearable miniature tFUS configuration allowed for the stimulation of motor cortical areas in rats and elicited sonication-related movements under both awake and anesthetized conditions. The awake condition yielded diverse physical responses compared to those reported in existing literatures. The ability to conduct an experiment in freely-moving awake animals can be gainfully used to investigate the effects of acoustic neuromodulation free from the confounding effects of anesthesia, thus, may serve as a translational platform to large animals and humans.
-
Transcranial focused ultrasound (tFUS) is a new non-invasive neuromodulation technique that uses mechanical energy to modulate neuronal excitability with high spatial precision. tFUS has been shown to be capable of modulating EEG brain activity in humans that is spatially restricted, and here, we use 7T MRI to extend these findings. We test the effect of tFUS on 7T BOLD fMRI signals from individual finger representations in the human primary motor cortex (M1) and connected cortical motor regions. Participants (N = 5) performed a cued finger tapping task in a 7T MRI scanner with their thumb, index, and middle fingers to produce a BOLD signal for individual M1 finger representations during either tFUS or sham neuromodulation to the thumb representation. ⋯ Single element tFUS can be paired with high field MRI that does not induce significant artifact. tFUS increases activation volumes of the targeted finger representation that is spatially restricted within M1 but does not extend to functionally connected motor regions. Trial registration ClinicalTrials.gov NCT03634631 08/14/18.