Bmc Neurosci
-
Randomized Controlled Trial
Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α.
Tumor necrosis factor-alpha (TNF-α) is elevated early in injured brain after traumatic brain injury (TBI), in humans and in animals. Etanercept (a TNF-α antagonist with anti-inflammatory effects) attenuates TBI in rats by reducing both microglial and astrocytic activation and increased serum levels of TNF-α. However, it is not known whether etanercept improves outcomes of TBI by attenuating microglia-associated, astrocytes-associated, and/or neurons-associated TNF-α expression in ischemic brain. A well clinically relevant rat model, where a lateral fluid percussion is combined with systemic administration of etanercept immediately after TBI, was used. The neurological severity score and motor function was measured on all rats preinjury and on day 3 after etanercept administration. At the same time, the neuronal and glial production of TNF-α was measured by Immunofluorescence staining. In addition, TNFα contents of ischemic cerebral homogenates was measured using commercial enzyme-linked immunosorbent assay kits. ⋯ This finding indicates that early microglia overproduction of TNF-α in the injured brain region after TBI contributes to cerebral ischemia and neurological motor deficits, which can be attenuated by etanercept therapy. Studies in this model could provide insight into the mechanisms underlying neurological motor disturbance in brain-injured patients.
-
Randomized Controlled Trial
Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex.
Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. ⋯ These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement.
-
Randomized Controlled Trial Comparative Study
The NMDA antagonist memantine affects training induced motor cortex plasticity--a study using transcranial magnetic stimulation.
Training of a repetitive synchronised movement of two limb muscles leads to short-term plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation (TMS) mapping. We used this paradigm to study the effect of memantine, a NDMA antagonist, on short-term motor cortex plasticity in 20 healthy human subjects, and we were especially interested in possible differential effects of different treatment regimens. In a randomised double-blinded cross over study design we therefore administered placebo or memantine either as a single dosage or as an ascending dosage over 8 days. Before and after one hour of motor training, which consisted of a repetitive co-contraction of the abductor pollicis brevis (APB) and the deltoid muscle, we assessed the motor output map of the APB muscle by TMS under the different conditions. ⋯ We conclude that the NMDA-antagonist memantine is able to block training-induced motor cortex plasticity when administered over 8 days, but not after administration of a single dose. This differential effect might be mainly due to the prolonged action of memantine at the NMDA receptor. These findings must be considered if clinical studies are designed, which aim at evaluating the potency of memantine to prevent "maladaptive" plasticity, e.g. after limb amputation.