Front Hum Neurosci
-
A significant body of experimental evidence has demonstrated that it is possible to induce the illusion of ownership of a fake limb or even an entire fake body using multisensory correlations. Recently, immersive virtual reality has allowed users to experience the same sensations of ownership over a virtual body inside an immersive virtual environment, which in turn allows virtual reality users to have the feeling of being "embodied" in a virtual body. ⋯ We discuss the current state of the art, as well as the challenges faced by, and ideas for, future research. Finally, we explore the potentialities of using an embodied virtual body in immersive virtual reality in the field of neurorehabilitation, specifically in the field of pain.
-
Migraine is a highly disabling disease characterized by recurrent pain. Despite an intensive effort, mechanisms of migraine pathophysiology still represent an unsolved issue. Evidence from both animal and human studies suggests that migraine is characterized by hyperresponsivity or hyperexcitability of sensory cortices, especially the visual cortex. ⋯ Moving away from these issues, we applied cathodal tDCS over the visual cortex of migraineurs, with and without aura, in order to decrease cortical excitability and thus physiologically restoring the perception of a reliable SiFI. Differently from our expectations, tDCS was unable to reliably modulate SiFI in migraine. The chronic, relatively excessive, visual cortex hyperexcitability, featuring the migraineur brain, may render tDCS ineffective for restoring multisensory processing in this disease.
-
Repeated pairing of electrical stimulation of a peripheral nerve with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) representation for a target muscle can induce neuroplastic adaptations in the human brain related to motor learning. The extent to which the motor state during this form of paired associative stimulation (PAS) influences the degree and mechanisms of neuroplasticity or motor learning is unclear. Here, we investigated the effect of volitional muscle contraction during PAS on: (1) measures of general corticomotor excitability and intracortical circuit excitability; and (2) motor performance and learning. ⋯ SRTT retention was greater following both PASACTIVE and PASREST after 1 week compared to PASCONTROL. These findings suggest that PAS may enhance motor learning retention and that motor state may be used to target different neural mechanisms of intracortical excitation and inhibition during PAS. This observation may be important to consider for the use of therapeutic noninvasive brain stimulation in neurologic patient populations.
-
Making a request is a common occurrence during social interactions. In most social contexts, requesters may impose punishments and many behavioral studies have focused on the differential effects of reasonable and unreasonable requests during such interactions. However, few studies have explored whether reasonable or unreasonable requests involve differential neurocognitive mechanisms. ⋯ For the modified DG task, no tDCS effect for either an unreasonable or reasonable request was observed. These findings suggest that rDLPFC was only involved in decision-making processes during unreasonable requests when there was an opportunity for peer punishment. Moreover, our results indicate that reasonable and unreasonable requests involve differential neurocognitive mechanisms in the context of possible peer punishment.
-
This study expores neural activity underlying creative processes through the investigation of music improvisation. Fourteen guitar players with a high level of improvisation skill participated in this experiment. The experimental task involved playing 32-s alternating blocks of improvisation and scales on guitar. electroencephalography (EEG) data was measured continuously throughout the experiment. ⋯ Together this collection of brain regions suggests that improvisation was mediated by processes involved in coordinating planned sequences of movement that are modulated in response to ongoing environmental context through monitoring and feedback of sensory states in relation to internal plans and goals. Machine-learning using Common Spatial Patterns (CSP) for EEG feature extraction attained a mean of over 75% classification performance for improvisation vs. scale conditions across participants. These machine-learning results are a step towards the development of a brain-computer interface that could be used for neurofeedback training to improve creativity.