J Neuroinflamm
-
The complement system has been suggested to affect injury or disease of the central nervous system (CNS) by regulating numerous physiological events and pathways. The activation of complement following traumatic CNS injury can also result in the formation and deposition of C5b-9 membrane attack complex (C5b-9/MAC), causing cell lysis or sublytic effects on vital CNS cells. Although complement proteins derived from serum/blood-brain barrier breakdown can contribute to injury or disease, infiltrating immune cells may represent an important local source of complement after injury. As the first immune cells to infiltrate the CNS within hours post-injury, polymorphonuclear leukocytes (PMNs) may affect injury through mechanisms associated with complement-mediated events. However, the expression/association of both early and terminal complement proteins by PMNs has not been fully characterized in vitro, and has not observed previously in vivo after traumatic spinal cord injury (SCI). ⋯ Data presented here provide the first characterization of early and terminal complement proteins associated with PMNs in vitro and in vivo after SCI. Data also suggest a role for PMNs in the local internalization or deliverance of complement and complement activation in the post-SCI environment.