J Neuroinflamm
-
Review
The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome.
Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. ⋯ The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury interactions following multitrauma and polytrauma, concomitant injuries should be recognized and accounted for in future pre-clinical and clinical traumatic brain injury studies.
-
Traumatic brain injury (TBI) results in long-term neurological deficits, which may be mediated in part by pro-inflammatory responses in both the injured brain and the circulation. Inflammation may be involved in the subsequent development of neurodegenerative diseases and post-injury seizures. The p75 neurotrophin receptor (p75NTR) has multiple biological functions, affecting cell survival, apoptotic cell death, axonal growth, and degeneration in pathological conditions. We recently found that EVT901, a novel piperazine derivative that inhibits p75NTR oligomerization, is neuroprotective, reduces microglial activation, and improves outcomes in two models of TBI in rats. Since TBI elicits both CNS and peripheral inflammation, we used a mouse model of TBI to examine whether EVT901 would affect peripheral immune responses and trafficking to the injured brain. ⋯ Together, these findings suggest that p75NTR signaling participates in the production of the peripheral pro-inflammatory response to CNS injury and implicates p75NTR as a part of the pro-inflammatory cascade. Thus, the neuroprotective effects of p75NTR antagonists might be due to a combination of central and peripheral effects, and p75NTR may play a role in the production of peripheral inflammation in addition to its many other biological roles. Thus, p75NTR may be a therapeutic target in human TBI.
-
Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases, including Alzheimer's disease (AD) and numerous recent reports document the development of dementia after TBI. Age is a significant factor in both the risk of and the incidence of acquired brain injury. TBI-induced inflammatory response is associated with activation of brain resident microglia and accumulation of infiltrating monocytes, which plays a pivotal role in chronic neurodegeneration and loss of neurological function after TBI. Despite the extensive clinical evidence implicating neuroinflammation with the TBI-related sequelae, the specific role of these different myeloid cells and the influence of age on TBI-initiated innate immune response remain unknown and poorly studied. ⋯ Importantly, these findings demonstrate that peripheral monocytes play a non-redundant and contributing role to the etiology of trauma-induced inflammatory sequelae in the aged brain.
-
Spinal cord injury (SCI) is a severe neurological disorder with many disabling consequences, including persistent neuropathic pain, which develops in about 40 % of SCI patients and is induced and sustained by excessive and uncontrolled spinal neuroinflammation. Here, we have evaluated the effects of lipoxin A4 (LXA4), a member of a unique class of endogenous lipid mediators with both anti-inflammatory and analgesic properties, on spinal neuroinflammation and chronic pain in an experimental model of SCI. ⋯ Collectively, our results suggest that LXA4 can effectively modulate microglial activation and TNF-α release through ALX/FPR2 receptors, ultimately reducing neuropathic pain in rodents after spinal cord hemisection. The dual anti-inflammatory and analgesic properties of LXA4, allied to its endogenous nature and safety profile, may render this lipid mediator as new therapeutic approach for treating various neuroinflammatory disorders and chronic pain with only limited side effects.