J Neuroinflamm
-
Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. BODY: We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. ⋯ Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
-
Mounting evidence indicates that children who experience abuse and neglect are prone to chronic diseases and premature mortality later in life. One mechanistic hypothesis for this phenomenon is that early life adversity alters the expression or functioning of the glucocorticoid receptor (GR) throughout the course of life and thereby increases sensitivity to inflammatory stimulation. An exaggerated pro-inflammatory response is generally considered to be a key cause of postoperative cognitive dysfunction (POCD). The aim of this study was to examine the effects of early life adversity on cognitive function and neuroinflammation after sevoflurane anesthesia in adult rats and to determine whether such effects are associated with the epigenetic regulation of GR. ⋯ Early life stress induces cognitive dysfunction after sevoflurane anesthesia, perhaps due to the aberrant methylation of the GR gene promoter, which reduces the expression of the GR gene and facilitates exaggerated inflammatory responses.
-
Cyclooxygenase-2 (COX-2) is induced under inflammatory conditions, and prostaglandin E2 (PGE2) is one of the products of COX activity. PGE2 has pleiotropic actions depending on the activation of specific E-type prostanoid EP1-4 receptors. We investigated the involvement of PGE2 and EP receptors in glial activation in response to an inflammatory challenge induced by LPS. ⋯ These results show that while selective activation of EP4 or EP2 exerts anti-inflammatory actions, EP4 is the main target of PGE2 in naïve microglia. The level of EP receptor expression changes from naïve to primed microglia where the COX-2/PGE2/EP2 axis modulates important adaptive metabolic changes.