J Neuroinflamm
-
Repetitive mild traumatic brain injuries (rmTBI) are associated with cognitive deficits, inflammation, and stress-related events. We tested the effect of nutrient intake on the impact of rmTBI in an animal model of chronic traumatic encephalopathy (CTE) to study the pathophysiological mechanisms underlying this model. We used a between group design rmTBI closed head injuries in mice, compared to a control and nutrient-treated groups. ⋯ The neuropathological findings in the rmTBI mice showed histopathological hallmarks of CTE, including increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation, while mice treated with diets had attenuated disease process. These studies demonstrate that consumption of nutrient-rich diets reduced disease progression.
-
Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regeneration. Inflammation/immune response at the site of nerve lesion is known to be an essential trigger of the pathological changes that have a critical impact on nerve repair and regeneration; moreover, the damage to peripheral nerve can cause a loss of sensory function and produces a persistent neuropathic pain. N-Acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, of which is N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic, and neuroprotective activities. The modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here, we investigated, in a mice model of sciatic nerve crush, the effect of 2-pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA that reportedly modulates activity of NAAA. ⋯ Therefore, treatment with PEA-OXA as a whole has shown a protective effect, which makes it a powerful candidate for the treatment of peripheral nerve injury and neuropathic pain.
-
The complement system plays an important role in many neurological disorders. Complement modulation, including C3/C3a receptor signaling, shows promising therapeutic effects on cognition and neurodegeneration. Yet, the implications for this pathway in perioperative neurocognitive disorders (PND) are not well established. Here, we evaluated the possible role for C3/C3a receptor signaling after orthopedic surgery using an established mouse model of PND. ⋯ Orthopedic surgery activates complement signaling. C3a receptor blockade may be therapeutically beneficial to attenuate neuroinflammation and PND.