Mol Pain
-
Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Adelta-fiber associated neurons and therefore the focus is on Abeta-fiber nociceptive neurons. ⋯ These data indicate that Abeta nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Abeta-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.
-
Genetic risk factors for pain sensitivity may also play a role in susceptibility to chronic pain disorders, in which subjects have low pain thresholds. The aim of this study was to determine if proposed functional single nucleotide polymorphisms (SNPs) in the GTP cyclohydrolase (GCH1) and mu opioid receptor (OPRM1) genes previously associated with pain sensitivity affect susceptibility to chronic widespread pain (CWP). Pain data was collected using body manikins via questionnaire at three time-points over a four year period from subjects aged 25-65 in the North-West of England as part of a population based cohort study, EPIFUND. ⋯ The frequency of the proposed GCH1 "pain-protective" haplotype (CAT) did not significantly differ between cases and controls and no significant associations were observed between the OPRM1 SNPs and CWP. In conclusion, there was no evidence of association between proposed functional SNPs, previously reported to influence pain sensitivity, in GCH1 and OPRM1 with CWP. Further evidence of null association in large independent cohorts is required to truly exclude these SNPs as genetic risk factors for CWP.
-
Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. ⋯ Peripheral persistent nociception produces great impact upon the higher brain structures that lead to not only temporal plasticity, but also spatial plasticity of synaptic connection and function in the HF. The spatial plasticity of synaptic activities is more complex than the temporal plasticity, comprising of enlargement of synaptic connection size at network level, deformed fEPSP at local circuit level and, increased synaptic efficacy at cellular level. In addition, the multi-synaptic model established in the present investigation may open a new avenue for future studies of pain-related brain dysfunctions at the higher level of the neuromatrix.