Mol Pain
-
We investigated the role of the central NMDA receptor NR2 subunits in the modulation of nociceptive behavior and p-p38 MAPK expression in a rat model with compression of the trigeminal nerve root. To address this possibility, changes in air-puff thresholds and pin-prick scores were determined following an intracisternal administration of NR2 subunit antagonists. We also examined effects of NR2 subunit antagonists on the p-p38 MAPK expression. ⋯ Our findings suggest that central NMDA receptor NR2 subunits play an important role in the central processing of trigeminal neuralgia-like nociception in rats with compression of the trigeminal nerve root. Our data further indicate that the targeted blockade of NR2 subunits is a potentially important new treatments strategy for trigeminal neuralgia-like nociception.
-
Clinical Trial
The analgesic effect of electroacupuncture on acute thermal pain perception--a central neural correlate study with fMRI.
Electrical acupuncture (EA) has been utilized in acute pain management. However, the neuronal mechanisms that lead to the analgesic effect are still not well defined. The current study assessed the intensity [optimal EA (OI-EA) vs. minimal EA (MI-EA)] effect of non-noxious EA on supraspinal regions related to noxious heat pain (HP) stimulation utilizing an EA treatment protocol for acute pain and functional magnetic resonance imaging (fMRI) with correlation in behavioral changes. Subjects underwent five fMRI scanning paradigms: one with heat pain (HP), two with OI-EA and MI-EA, and two with OI-EA and HP, and MI-EA and HP. ⋯ Intensities of EA plays an important role in modulating central pain perception.
-
Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation. ⋯ The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.