Mol Pain
-
Comparative Study
A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.
The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the "agnostic" approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury. ⋯ We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury, and may represent novel genes or isoforms. We also recommend the use of a high sequencing depth in order to detect differential expression for genes with low levels of expression.
-
Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. ⋯ The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.
-
Recent studies have suggested an association between genotypes affecting the expression of the serotonin transporter and thermal pain perception and the thermal grill. The aim of this study was to investigate differences in thermal and mechanical pain perception and the thermal grill in two groups of healthy volunteers according to their genotype, associated with either high (n = 40) or low (n = 40) expression of the serotonin transporter and according to gender. Cold and warm detection and pain thresholds, pressure pain threshold and cold, warm and pain sensations to single or alternating stimuli with cold (20°C) and warm (40°C) temperatures (known as the thermal grill) were determined. In addition, intensity of ongoing pain and area and intensity of pinprick hyperalgesia in the secondary hyperalgesic area following topical application of capsaicin and vehicle control (ethanol) were determined. ⋯ Genotypes associated with high or low expression of the serotonin transporter were not associated with thermal pain thresholds, pressure pain threshold, pain after capsaicin application or responses to the thermal grill.The present results do not support that the investigated genotypes play a major role in thermal pain perception among healthy individuals.
-
Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. ⋯ These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia.
-
The rostral ventromedial medulla (RVM) is a key brainstem structure that conveys powerful descending influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT) neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear. ⋯ These results suggest that selective activation of RVM 5-HT neurons exerts a predominant effect of pain facilitation under control conditions.