Mol Pain
-
It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. ⋯ These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia.
-
The P2X7 receptor is a member of the P2X family of adenosine 5'-triphosphate-gated cation channels. Several recent studies have demonstrated that this receptor is involved in mechanisms related to pain and inflammation. However, unknown is whether polymorphisms of the P2RX7 gene that encodes the human P2X7 receptor influence pain sensitivity and analgesic effects of opioids. The P2RX7 gene is known to be highly polymorphic. Thus, the present study examined associations between fentanyl sensitivity and polymorphisms in the P2RX7 gene in 355 Japanese patients who underwent painful orofacial cosmetic surgery. ⋯ Cold pain sensitivity and analgesic effects of fentanyl were related to the SNP and haplotypes of the P2RX7 gene. The patients with the rs1718125 G>A SNP tended to show higher VAS24 scores. Moreover, the combination of polymorphisms from the 5'-flanking region to exon 5 recessively affected cold pain sensitivity and analgesic effects of opioids for acute cold pain. The present findings shed light on the involvement of P2RX7 gene polymorphisms in naive cold pain sensitivity and analgesic effects of fentanyl.
-
Acute postoperative pain is one of the frequent reasons for pain treatment. However, the exact mechanisms of its development are still not completely clear. Transient receptor potential vanilloid 1 (TRPV1) receptors are involved in nociceptive signaling in various hypersensitive states. Here we have investigated the contribution of TRPV1 receptors expressed on cutaneous peripheral nociceptive fibers and in the spinal cord on the development and maintenance of hypersensitivity to thermal and mechanical stimuli following surgical incision. A rat plantar incision model was used to test paw withdrawal responses to thermal and mechanical stimuli. The effect of the TRPV1 receptor antagonist SB366791 was investigated 1) by intrathecal injection 15 min before incision and 2) intradermal injection before (30 min) and immediately after the surgery. Vehicle-injected rats and naïve animals treated identically were used as controls. ⋯ Our experiments suggest that both peripheral and spinal cord TRPV1 receptors are involved in increased cutaneous sensitivity following surgical incision. The analgesic effect of the TRPV1 receptor antagonist was especially evident in the reduction of thermal hyperalgesia. The activation of TRPV1 receptors represents an important mechanism in the development of postoperative hypersensitivity.
-
Macrophage infiltration to inflammatory sites promotes wound repair and may be involved in pain hypersensitivity after surgical incision. We recently reported that the development of hyperalgesia during chronic inflammation is regulated by macrophage polarity, often referred to as proinflammatory (M1) or anti-inflammatory (M2) macrophages. Although opioids such as morphine are known to alter the inflammatory milieu of incisional wounds through interactions with immunocytes, the macrophage-mediated effects of morphine on the development of postincisional pain have not been well investigated. In this study, we examined how morphine alters pain hypersensitivity through phenotypic shifts in local macrophages during the course of incision-induced inflammation. ⋯ Local administration of morphine alleviated the development of postincisional pain, possibly by altering macrophage polarity at the incisional sites. A morphine-induced shift in macrophage phenotype may be mediated by a COX-2-dependent mechanism. Therefore, μ-opioid receptor signaling in macrophages may be a potential therapeutic target during the early phase of postincisional pain development.
-
Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. ⋯ These findings suggest that Artn regulates the expression and composition of nAChRs in GFRα3 nociceptors and that these changes contribute to the thermal hypersensitivity that develops in response to Artn injection and perhaps to inflammation.