Mol Pain
-
Trigeminal neuralgia is accompanied by severe mechanical, thermal and chemical hypersensitivity of the orofacial area innervated by neurons of trigeminal ganglion (TG). We examined the role of the voltage-gated sodium channel subtype Nav1.9 in the development of trigeminal neuralgia. ⋯ These results demonstrate that Nav1.9 channels play a critical role in the development of orofacial neuropathic pain. New routes for the treatment of orofacial neuropathic pain focussing on regulation of the voltage-gated Nav1.9 sodium channel activity should be investigated.
-
Altered kallikrein-related peptidase activity and bradykinin are associated with skin disorders in humans and mice under chronic inflammation conditions. The bradykinin B1 receptor (B1R), also known as one of the G-protein-coupled receptor family and usually absent in intact tissues and upregulated during tissue injury, is responsible for vasodilation, capillary permeability, nociceptor sensitization, and pain; it is indispensable for physiopathological progress in chronic inflammation conditions, but its roles and effectors in the itching sensation of the allergic contact dermatitis model are poorly defined. ⋯ Our data provide evidence that B1R facilitates the chronic itching sensation related to keratinocytes in a DCP-treated chronic inflammation experimental model.
-
ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear. ⋯ We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain.
-
Peripheral cold neuropathic pain is a serious side effect of oxaliplatin treatment. However, the mechanism of oxaliplatin-induced cold hyperalgesia is unknown. In the present study, we investigated the effects of oxaliplatin on transient receptor potential ankyrin 1 (TRPA1) in dorsal root ganglion (DRG) neurons of rats. ⋯ Together, these results demonstrate that TRPA1 expression via activation of p38 MAPK in DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia.
-
We have previously shown that endogenously active purinergic P2X7 receptors (P2X7Rs) in satellite glial cells of dorsal root ganglia (DRGs) stimulate ATP release. The ATP activates P2Y1Rs located in the enwrapped neuronal somata, resulting in down-regulation of P2X3Rs. This P2X7R-P2Y1-P2X3R inhibitory control significantly reduces P2X3R-mediated nociceptive responses. The underlying mechanism by which the activation of P2Y1Rs inhibits the expression of P2X3Rs remains unexplored. ⋯ p38 in DRG neurons downstream of P2Y1R is necessary and sufficient for the P2X7R-P2Y1R inhibitory control of P2X3R expression.