Mol Pain
-
Mammals use tactile end-organs to perform sensory tasks such as environmental exploration, social interaction, and tactile discrimination. However, cellular and molecular mechanisms underlying tactile transduction in tactile end-organs remain poorly understood. The patch-clamp recording technique may be the most valuable approach for detecting and studying tactile transduction in tactile end-organs, but it is technically challenging because tactile transduction elements in an end-organ are normally inaccessible by patch-clamp recording electrodes. ⋯ This technique offers an opportunity to explore the identities and properties of ion channels that are involved in tactile transduction in whisker hair follicles, and it may also lend a useful tool for researchers to study other tactile end-organs. The experimental protocol describes procedures for 1) tissue dissection and whisker hair follicle preparation, 2) device setup and steps for performing patch-clamp recordings from Merkel cells in a whisker hair follicle, 3) methods of delivering mechanical stimuli, and 4) intra-follicle microinjection for receptor knockdown in whisker hair follicles. The main procedures in this protocol, from tissue preparation to whole-cell patch-clamp recordings, can be completed in a few hours.
-
The single application of high-concentration of capsaicin has been used as an analgesic therapy of persistent pain. However, its effectiveness and underlying mechanisms remain to be further evaluated with experimental approaches. The present study provided evidence showing that the single application of capsaicin dose-dependently alleviated nociceptive hypersensitivity, and reduced the action potential firing in small-diameter neurons of the dorsal root ganglia (DRG) in rats and mice. ⋯ The inhibitory effects of capsaicin were calcium-dependent, and mediated by the capsaicin receptor (transient receptor potential vanilloid type-1). We further found that capsaicin exerted inhibitory effects on the persistent nociceptive hypersensitivity induced by peripheral inflammation and nerve injury. Thus, these results support the long-lasting and inhibitory effects of topical capsaicin on persistent pain, and the clinic use of capsaicin as a pain therapy.
-
Transient receptor potential (TRP) channels are nonselective cation channels expressed in a variety of sensory structures, and are important molecular mediators of thermal, mechanical, cellular and chemical signals. We investigated the function of one key member of the TRP superfamily, TRPA1, in the spinal dorsal horn using in vivo patch-clamp recordings. ⋯ TRPA1 appears to be localized not only at presynaptic terminals on SG neurons, enhancing glutamate release, but also in the terminals of primary afferents innervating spinal inhibitory interneurons, which have synaptic interactions with SG neurons. This study offers further insight into the mechanisms underlying the possible antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Our findings suggest that pharmacological activation of spinal TRPA1 channels may have therapeutic potential for the treatment of pain.
-
Laser in-situ keratomileusis (LASIK) is a commonly performed surgical procedure used to correct refractive error. LASIK surgery involves cutting a corneal flap and ablating the stroma underneath, with known damage to corneal nerves. Despite this, the epidemiology of persistent pain and other long-term outcomes after LASIK surgery are not well understood. ⋯ This review will focus on the known epidemiology of symptoms after LASIK and discuss mechanisms of persistent post-op pain due to nerve injury that may be relevant to these patients. Potential preventative and treatment options based on approaches used for other forms of persistent post-op pain and their application to LASIK patients are also discussed. Finally, the concept of genetic susceptibility to post-LASIK ocular surface pain is presented.
-
The Methyl CpG binding protein 2 gene (MeCP2 gene) encodes a critical transcriptional repressor and is widely expressed in mammalian neurons. MeCP2 plays a critical role in neuronal differentiation, neural development, and synaptic plasticity. Mutations and duplications of the human MECP2 gene lead to severe neurodevelopmental disorders, such as Rett syndrome and autism. In this study we investigate the role of MeCP2 in the spinal cord and found that MeCP2 plays an important role as an analgesic mediator in pain circuitry. ⋯ Our study shows that MeCP2 plays an analgesic role in both acute pain transduction and chronic pain formation through regulating CREB-miR-132 pathway. This work provides a potential therapeutic target for neural pathologic pain, and also sheds new lights on the abnormal sensory mechanisms associated with autism spectrum orders.