Mol Pain
-
Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. ⋯ Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors.
-
Physical exercise effectively attenuates neuropathic pain, and multiple events including the inhibition of activated glial cells in the spinal dorsal horn, activation of the descending pain inhibitory system, and reductions in pro-inflammatory cytokines in injured peripheral nerves may contribute to exercise-induced hypoalgesia. Since fewer GABAergic hypoalgesic interneurons exist in the dorsal horn in neuropathic pain model animals, the recovery of impaired GABAergic inhibition in the dorsal horn may improve pain behavior. We herein determined whether the production of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) in the dorsal horn is restored by treadmill running and contributes to exercise-induced hypoalgesia in neuropathic pain model mice. C57BL/6 J mice underwent partial sciatic nerve ligation (PSL). PSL-Runner mice ran on a treadmill at 7 m/min for 60 min/day, 5 days/week, from two days after PSL. ⋯ Treadmill running prevented PSL-induced reductions in GAD65/67 production, and, thus, GABA levels may be retained in interneurons and neuropils in the superficial dorsal horn. Therefore, improvements in impaired GABAergic inhibition may be involved in exercise-induced hypoalgesia.
-
Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. ⋯ Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene.
-
cAMP response element binding protein (CREB)-dependent gene expression plays an important role in central sensitization. CREB-regulated transcription coactivator 1 (CRTC1) dramatically increases CREB-mediated transcriptional activity. Brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, and miRNA-212/132, which are highly CREB responsive, function downstream from CREB/CRTC1 to mediate activity-dependent synaptic plasticity and in turn loops back to amplify CREB/CRTC1 signaling. This study aimed to investigate the role of spinal CRTC1 in the maintenance of bone cancer pain using an RNA interference method. ⋯ Upregulation of CRTC1 enhancing CREB-dependent gene transcription in spinal cord may play an important role in bone cancer pain. Inhibition of spinal CRTC1 expression reduced bone cancer pain. Interruption to the positive feedback circuit between CREB/CRTC1 and its targets may contribute to the analgesic effects. These findings may provide further insight into the mechanisms and treatment of bone cancer pain.
-
Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. ⋯ Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway.