Mol Pain
-
Bone metastases occur frequently in advanced breast, lung, and prostate cancer, with approximately 70% of patients affected. Pain is a major symptom of bone metastases, and current treatments may be inadequate or have unacceptable side effects. The mechanisms that drive cancer-induced bone pain are not fully understood; however, it is known that there is sensitization of both peripheral bone afferents and central spinal circuits. It is well established that the N-methyl-D-aspartate receptor plays a major role in the pathophysiology of pain hypersensitivity. Inhibition of the non-receptor tyrosine kinase Src controls N-methyl-D-aspartate receptor activity and inhibiting Src reduces the hypersensitivity associated with neuropathic and inflammatory pains. As Src is also implicated in osteoclastic bone resorption, we have investigated if inhibiting Src ameliorates cancer-induced bone pain. We have tested this hypothesis using an orally bioavailable Src inhibitor (saracatinib) in a rat model of cancer-induced bone pain. ⋯ This is the first demonstration that Src plays a role in the development of cancer-induced bone pain and that Src inhibition represents a possible new analgesic strategy for patients with bone metastases.
-
We used functional MRI and a longitudinal design to investigate the brain mechanisms in a previously reported estrogen-dependent visceral hypersensitivity model. We hypothesized that noxious visceral stimulation would be associated with activation of the insula, anterior cingulate cortex, and amygdala, and that estrogen-dependent, stress-induced visceral hypersensitivity would both enhance activation of these regions and recruit activation of other brain areas mediating affect and reward processing. Ovariectomized rats were treated with estrogen (17 β-estradiol, E2) or vehicle (n = 5 per group) and scanned in a 7T MRI at three different time points: pre-stress (baseline), 2 days post-stress, and 18 days post-stress. ⋯ This unexpected finding suggests that E2 may dramatically alter visceral nociceptive processing in the brain following an acute stressor. This study is the first to examine estrogen-stress dependent interactions in response to noxious visceral stimulation using functional MRI. Future studies that include other control groups and larger sample sizes are needed to fully understand the interactions between sex hormones, stress, and noxious stimulation on brain activity.
-
There is an urgent need to develop and incorporate novel behavioral tests in classically used preclinical pain models. Most rodent studies are based upon stimulus-evoked hindpaw measurements even though chronic pain is usually a day and night experience. Chronic pain is indeed a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly under-represented in the literature. Moreover, we lack standardization in most behavioral paradigms to guarantee reproducibility and ensure adequate discussion between different studies. This concerns not only the combination, application, and duration of particular behavioral tasks but also the effects of different housing conditions implicating social isolation. ⋯ This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain and highlights the importance of social environment on spontaneous non-evoked behaviors in a mouse model of chronic neuropathy. Our results provide fundamental considerations for future experimental planning and discussion of pain-related behavioral changes.
-
Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. ⋯ Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging.
-
Although calcitonin gene-related peptide is a recognized pain transducer, the expression of calcitonin gene-related peptide in primary afferents may be differentially affected following different types of nerve injury. Here, we examined whether different calcitonin gene-related peptide expression patterns in primary afferents contributes to distinct sensory disturbances in three animal models of sciatic nerve injury: chronic constriction injury, mild (100 g force) or strong (1000 g force) transient crush in rats. Assessments of withdrawal reflexes and spontaneous behavior indicated that chronic constriction injury and mild crush resulted in positive neuropathic symptoms (static/dynamic mechanical allodynia, heat hyperalgesia, cold allodynia, spontaneous pain). ⋯ Moreover, nerve injury caused a subcellular redistribution of calcitonin gene-related peptide from small- and medium-size dorsal root ganglia neurons to large-size dorsal root ganglia neurons, which paralleled the development of positive neuropathic symptoms. Intrathecal administration of the calcitonin gene-related peptide receptor antagonist ameliorated these positive symptoms, indicating that the expression of calcitonin gene-related peptide in large-size dorsal root ganglia neurons is important for the positive neuropathic symptoms in all three models. Taken together, these results suggest that distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve.