Mol Pain
-
Pain is a major symptom of many medical conditions and the worldwide number one reason for people to seek medical assistance. It affects the quality of life of patients and poses a heavy financial burden on society with high costs of treatment and lost productivity. Furthermore, the treatment of chronic pain presents a big challenge as pain therapeutics often lack efficacy and exhibit minimal safety profiles. ⋯ A potential solution may be offered by emerging strategies capable of performing standardized and reproducible proteome analysis, such as data-independent acquisition-mass spectrometry (DIA-MS). We have recently demonstrated the applicability of DIA-MS to interrogate chronic pain-related proteome alterations in mice. Based on our results, we aim to provide an overview on DIA-MS and its potential to contribute to the comprehensive characterization of molecular signatures underlying pain pathologies.
-
Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-coding RNAs. ⋯ We also observed that miR-30b decreased Nav1.7 expression in PC12 cells. Taken together, our results suggest that miR-30b plays an important role in neuropathic pain by regulating Nav1.7 expression. Therefore, miR-30b may be a promising target for the treatment of chronic neuropathic pain.
-
Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. ⋯ The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis.